
61 
 

© 2014 The author and IJLTER.ORG. All rights reserved. 

 
 

International Journal of Learning, Teaching and Educational Research 
Vol. 4, No.1, pp. 61-74, April 2014 
 

Comparison and Properties of Correlational and 
Agreement Methods for Determining Whether or Not to 

Report Subtest Scores 

 
Oksana Babenko, PhD 
W. Todd Rogers, PhD 
University of Alberta 
Edmonton, Canada 

 
 

Abstract. Large-scale testing agencies often report subtest scores in addition to reporting 
the total test score. But is there evidence that subtests reveal differences in student 
performances? Three methods for determining whether subscore reporting is warranted 
were examined and evaluated using large-scale data as well as samples of various sizes 
for Reading and Mathematics assessments. Results revealed that subtests did not differ 
among themselves and added no value over the total test. The method statistics were 
determined to be accurate and precise estimators of the population parameters. 
Implications for subscore reporting are discussed.   
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Introduction 
 
Results from a large-scale achievement test can be reported in the form of the total test score 
and, if justified, as a series of subtest scores together with the total test score. The common 
practice is to report the total score as a summary of achievement of the total domain tested. 
However, large-scale testing agencies have increasingly adopted the practice of reporting 
subtest scores in addition to reporting the total test score because of the potential diagnostic 
value of subtest scores (Wainer, Sheehan, & Wang, 2000; Tate, 2004; Sinharay, Haberman, & 
Puhan, 2007; Yao & Boughton, 2007; Sinharay, Puhan, & Haberman, 2009; Sinharay, 2010). Part 
of the argument put forward to support subscore reporting is based on the fact that the items 
comprising a test are referenced to a curriculum that is multidimensional in nature, with each 
dimension characterized by specific content and/or cognitive skills. For example, items on a 
Mathematics achievement test can be referenced to (a) content areas, such as number sense and 
numeration, measurement, geometry and spatial sense, patterning and algebra, and data 
management and probability, and/or (b) cognitive skills, such as knowledge and 
understanding, application, and problem solving. In test development, the table of 
specifications serves to ensure that the test reflects the multidimensionality of the curriculum. 
However, what needs to be recognized is that there must be evidence that the variables or skills 
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measured by the subtests are indeed sufficiently distinct to warrant reporting scores from the 
subtests. Additionally, while the number of test items typically reflects the proportional 
weighting given to each cell within the table of specifications, the total number of items 
included in the test is limited by the amount of available test administration time. 
Consequently, more often than not the number of items for each dimension in the table of 
specifications is not sufficient to achieve a high degree of reliability or a low error of 
measurement.  

Despite these cautions, officials at large-scale assessment agencies still want to report subtest 
scores even though no deliberate attempt was made to ensure that (a) the variables (e.g., 
number sense and numeration) assessed by subtests are distinct and not highly related, and (b) 
there is a sufficient number of items for each subtest to ensure high reliability. The evidence that 
is usually used to determine if the variables are sufficiently distinct is the correlation among the 
subtest scores whereas the internal consistency of the items in each subtest provides evidence of 
subscore reliability. What is desired are low subtest correlations and high subtest internal 
consistencies (American Educational Research Association, American Psychological 
Association, & National Council on Measurement and Evaluation, 1999; Wainer, Vevea, 
Camacho, Reeve, et al., 2001; Tate, 2004).  

Various methods for determining whether subtest scores are distinct and/or add value over 
and above the total test score have been developed. These methods include the agreement 
method (Kelley, 1923; see also Gulliksen, 1951; Lord & Novick, 1968; Ryan, 2003; Haladyna & 
Kramer, 2004), correlations corrected for attenuation due to unreliability of the measures 
(McPeek, Altman, Wallmark, & Wingersky, 1976; Harris & Hanson, 1991; Haladyna & Kramer, 
2004), factor analytic method (McPeek et al., 1976; Grandy, 1992), statistical model fit (Harris & 
Hanson, 1991), and, in the case of determining only whether a subtest has value over the total 
test, the proportional reduction of the mean squared error (Haberman, 2005, 2008; Sinharay, 
Haberman, & Puhan, 2007). Three of these methods were considered in the present study: 

Kelley’s agreement method (KR; Kelley, 1923), correlations corrected for attenuation ( ˆ
c jk ; 

McPeek, et al., 1976), and the proportional reduction of the mean squared error (PRMSE; 
Haberman, 2005; Sinharay, Haberman, & Puhan, 2007).  

The agreement method takes into account the actual differences between observed scores on 
subtests j and k expressed in the same score metric (Kelley, 1923; Gulliksen, 1951; Lord & 
Novick, 1968; Ryan, 2003; Haladyna & Kramer, 2004). Working with z-scores ( 0  ; 1  ) or 

scores in some other standardized metric to remove the effects of different means and standard 

deviations of subtests j and k, the difference, id , between two standard scores for student i is 

given by: 

i ij ik
d z z  ,                      

where ijz  is the observed standard score of student i on subtest j, and ik
z  is the observed 

standard score of student i on subtest k. If the estimated standard error of the difference for a 

given student,  2 jj kk  , where 
jj  and 

kk are the reliabilities of subtests j and k, and the 
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estimated standard deviation of the obtained differences for the group of students, 2 2 jk , 

where jk  is the correlation between the scores on subtests j and k, are close in value, then the 

obtained differences are no greater than what would be expected by chance (Kelley, 1923, p. 
329). In order to determine directly the percentages of students with differences beyond what 
would be expected by chance, Kelley computed the proportion of cases in excess of the chance 
as a function of the ratio:  

2

2 2

jj kk

jk

KR










 (Kelley, 1923, p. 330).  

Kelley (1923) illustrated his agreement method with the eight subtests of the Stanford 
Achievement Test Battery and found 10% to 44% of the students had differences beyond chance 
for 36 pairs of subtests (p. 331). Values of KR closer to one led to small proportions of students 
with differences beyond chance; values of KR further from one (i.e., closer to zero) led to larger 
proportions of students with differences beyond chance. 

The correlation corrected for attenuation due to unreliability, c jk , is given by: 

jk

c jk

jj kk




 
 , 

where jk  is the uncorrected correlation between the scores on subtests j and k, and jj and 
kk

are the internal consistency estimates (Cronbach, 1951) for subtests j and k, respectively. If c jk  

is less than 0.90, then it is concluded that student performances on subtests j and k differ and 
that reporting of subtest scores is warranted (McPeek et al., 1976; Haladyna & Kramer, 2004). 

For example, Haladyna and Kramer (2004) used the c jk  method to determine whether subtest 

scores on a basic biomedical science test revealed any differences in examinees’ performances. 
They found that the corrected correlations were higher than 0.90, suggesting a high degree of 
similarity in examinees’ performances on the subtests of the test.  
 
The proportional reduction of the mean squared error method involves predicting the true 
scores on subtest j from the observed scores on subtest j and from the total test score:  

( )ij j jj ij js        (1) 

and 

( )
j

tiX j s x i X

X

x





    ,               (2) 

where ij and 
iX  are, respectively, the true score for student i on subtest j when predicted from 

the observed subtest score and the true score of student i on subtest j when predicted from the 

total test X score for student i; j and
X are the means of subtest j and the total test X;  

ijs and 
ix are the observed scores on subtest j and the total test X, respectively, for student i;  

jj and 
XX are the internal consistencies of subtest j and the total test X, respectively; 
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X  is the standard deviation of the total test scores, and 
j j jj    , where j is the standard 

deviation of the scores on subtest j; and 2

ts x s x XX 
   , where 

2

s x 
  is computed as outlined in 

Haberman (2005). The corresponding mean squared errors (MSE) are given by: 

           
      

         

and 

                
        

   , 

where  
2

jτ
σ  is the true score variance for subtest j. The MSE when jτ  is simply predicted from 

js  is the subtest score error variance, 2 2(1 )
je j jj    .  

 
The proportional reduction of the mean squared errors when the true score is predicted from a 
subtest score using equation (1) is given for each subtest by: 

2

2τ / s

e τ / s

e

MSE
PRMSE

σ

σ

-
=  

The PRMSE when the true score is predicted from the total test score is computed in the same 

way but using the τ / xMSE  as the base. If 
τ / s τ/xPRMSE > PRMSE , then reporting the scores for 

subtest j adds value over reporting only the total test scores (Haberman, 2005, 2008; Sinharay et 
al., 2007, 2009; Lyren, 2009; Sinharay, 2010). Haberman (2008) used the PRMSE method to 
determine whether or not the subtest scores on SAT I “had added value over and above the 
value of the total score” and found that “none of the section scores of SAT I math or SAT I 
verbal provide any appreciable information concerning an examinee that is not already 
provided by the math or verbal total score” (p. 221). Using the PRMSE method, Sinhary (2010) 
examined 25 operational tests to see if the subtests within each test had added value over the 
full test. He found that 16 of the 25 tests had no subtest scores with added value even though 
subtest scores were reported in many cases. Of the remaining nine tests, some but not all of the 
subtests had added value. However, it should be noted that in contrast to correlations corrected 
for attenuation, the PRMSE does not compare subtest scores to determine if they are distinct 
from one another. 

In contrast to correlations corrected for attenuation and proportional reduction of the mean 
squared error methods, which do not specifically look at the agreement between two observed 
scores obtained from two subtests, the agreement method takes into account the actual 
differences between observed scores on subtests j and k expressed in the same score metric. In 

the case of the c jk method, if differences among the subtests are revealed, then the agreement 

method will need to be used to determine which students have pairs of scores that differ. In the 
case of the PRMSE method, if a subtest is found to have value over the total test, then the 
agreement method will need to be used to determine which students have subtest scores that 
differ from the total test. Thus, it seems reasonable to use the Kelley’s agreement method alone. 
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Hence, one purpose of the present study was to determine whether Kelley’s agreement and 
correlations corrected for attenuation methods would lead to the same or different decision 
regarding the identification of pairs of distinct subtests and whether Kelley’s agreement and 
proportional reduction of the mean squared error methods would lead to the same or different 
decision about subtests having added value over the total test. If the decisions were the same in 
both, then the agreement method could simply be used. 

A second purpose of the study was to examine the accuracy and precision of the statistics used 

in the KR, c jk , and PRMSE methods. No studies were found in the published literature that 

comparatively examined accuracy and precision of the statistics used in these methods. If one 
method produced biased or imprecise estimates, then different decisions could be made when 
using samples rather than the population. However, if the method produced unbiased and 
precise estimates, then the decisions made would not be due to bias or impreciseness. 

Method 
 
The two data sets used in the study were population data sets for the Junior (Grade 6) English-
language Reading and Mathematics assessments conducted by the Education Quality and 
Accountability Office (EQAO) in Ontario, Canada (www.eqao.com). EQAO conducts annual 
province-wide assessments in both of Canada’s official languages (English and French) at the 
Primary (Grade 3) and Junior (Grade 6) levels in the areas of Reading, Writing, and 
Mathematics, at the Grade 9 level in Academic Mathematics and Applied Mathematics, and at 
the Grade 10 level in Literacy (Reading and Writing). Results are reported at the provincial, 
district, school, and student levels and are publically available on the EQAO website, with 
emphasis on progress from the previous year. EQAO requested that the present study be 
conducted to determine if reporting subtest scores was justified given no explicit attempt was 
made to develop subtests with psychometric characteristics that allowed subtest score 
reporting. 

Description of the Reading Test 
The English-language Reading test items are referenced to three knowledge and skills 
categories as specified in the curriculum for the province: Explicit Information, Implicit 
Information, and Connections. The items in the Explicit Information subtest require students to 
detect and understand information and ideas stated explicitly in a variety of text types 
identified in the provincial curriculum. The items in the Implicit Information subtest probe 
students’ understanding of implicitly stated information and ideas. The items in the 
Connections subtest require students to demonstrate their understanding of text passages by 
connecting, comparing, and contrasting the ideas presented in the passages and drawing upon 
their own knowledge, experience and insights, other texts, and the world around them. Thus, 
the three subtests can be ordered in terms of complexity, with the Explicit Information and 
Connections subtests at the lowest and the highest levels of complexity, respectively. The 
Explicit Information subtest contains six multiple-choice items, the Implicit Information subtest 
contains 14 multiple-choice items and four open-response items, and the Connections subtest 
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contains six multiple-choice items and six open-response items. The 10 open-response items are 
scored using four-point scoring rubrics. 

Description of the Mathematics Test 
In contrast to the Reading assessment, the items on the Mathematics assessment are referenced 
by content areas (i.e., strands) and by cognitive skills as specified in the mathematics 
curriculum. The five content areas include: Number Sense and Numeration (8 items involving 
estimation, rate, ratio, and use of fractions), Measurement (8 items involving the use of area 
relationships, understanding of the dimensions of the shapes needed to calculate their areas, 
and the conversion of metric area units), Geometry and Spatial Sense (6 items dealing with the 
identification, performance and description of transformations, the identification of angles, and 
accurate use of rulers and protractors), Patterning and Algebra (7 items dealing with growing 
patterns, use of diagrams, tables and number sequences to represent the stages of patterns), and 
Data Management and Probability (7 items involving concepts of probability, predicting and 
representing the probability of an outcome, comparing probabilities using common 
representations (e.g., common denominators, percents or decimals), and interpreting graphs). 
The five content areas are not ordered in terms of complexity.  

Cognitive skills are divided into three categories: Knowledge and Understanding (8 items), 
Application (15 items), and Problem Solving (13 items). The items referenced to the Knowledge 
and Understanding category require students to demonstrate subject specific content 
(knowledge) and the comprehension of its meaning and significance (understanding). The 
Application items require students to select and fit an appropriate mathematical tool or get the 
necessary information. The Problem Solving items require students to select and sequence a 
variety of tools to solve a problem and demonstrate a critical-thinking process. That is, to 
answer Problem Solving items, students need to make a plan. In contrast to the content subtests, 
the cognitive subtests can be ordered in terms of complexity, with the Knowledge and 
Understanding subtest and the Problem Solving subtest being at the lowest and the highest 
levels of complexity, respectively. The total number of items on the Mathematics assessment is 
36, including 8 open-response items scored using a four-point scoring rubric and distributed 
such that each content subtest has at least one open-response item. 

Analyses 
The analyses were conducted in two main stages corresponding to the two purposes of the 
study. First, the responses of the population of students were analysed to obtain the population 
value of each test statistic for each of the three detection methods. Following this, the analyses 
were repeated for 1,000 replicated independent samples of five different sizes – 250, 500, 1,000, 
2,000, and 5,000 – randomly drawn from the population with replacement to (1) determine the 
effect of sample size on the accuracy and precision of the estimators, and then to (2) assess the 
consistency of the decisions made using the three detection methods in light of the findings 
about accuracy and precision. At the first stage, means and standard deviations of the 
distributions of sample statistics were used to evaluate the three detection methods with respect 

to their accuracy and precision. At the second stage, the KR and c jk  methods were applied, 

first, at the population level to determine if the subtests were distinct, and then applied to each 
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of 1,000 replicated samples for each of the five sample sizes to see if the same decision was 
made. The PRMSE method was applied at the population level and then for each replicated 
sample to see if the subtests added value over the total test. The consistency of the decisions 
made was assessed using the percentage of samples that led to the same decision that was made 
at the population level.  

Results and Discussion 
 
Psychometric Properties of the Reading and Mathematics Tests 
The psychometric properties of the Junior Reading and Mathematics subtests and the total tests 
are provided in Table 1 for the population of students. The means and standard deviations are 
reported in the observed score units and as percentages (in parentheses).  

Table 1. Means, Standard Deviations, and Internal Consistencies for Reading and Mathematics Tests 

Subtest/Total Test k/msa 
.X
 Xs

 
Correlations 

          
Reading, N = 128,089    EI II C TT   

Explicit Information (EI)      6/6   4.59 (76.5) 1.28 (21.3) 0.47b 0.59 0.52 0.69   
Implicit Information (II) 18/30 20.92 (69.7) 4.42 (14.7)  0.76 0.74 0.93   
Connections (C) 12/30 17.16 (57.2) 4.33 (14.4)   0.74 0.92   
Total Test (TT) 36/60 42.68 (64.7) 8.97 (13.6)    0.87   

 
Mathematics, N = 127,596 

         

    
Content Area 

    
N 

 
M 

 
A  

 
P  

 
G 

 
TT 

Numeration (N) 8/14 8.44 (60.3) 3.02 (21.6) 0.63 0.66 0.62 0.67 0.63 0.87 
Measurement (M) 8/11 6.34 (57.6) 2.67 (24.3)  0.63 0.59 0.63 0.63 0.84 
Algebra (A) 7/10 6.63 (66.3) 2.14 (21.4)   0.58 0.62 0.59 0.80 
Probability (P) 7/13 7.20 (55.4) 2.71 (20.8)    0.61 0.62 0.85 
Geometry (G) 6/12 7.18 (59.8) 2.80 (23.3)     0.60 0.83 
Total Test (TT) 36/60 35.79 (59.7) 11.20 (18.7)      0.89 
 
Cognitive Skill 

    
K/U 

 
A 

 
PS 

 
TT 

  

Know/Understand (K/U)    8/8   5.45 (68.0) 1.87 (23.4) 0.60 0.70 0.67 0.80   
Application (A) 15/24 14.98 (62.4) 4.91 (20.5)  0.75 0.79 0.94   
Problem Solving (PS) 13/28 15.36 (54.8) 5.42 (19.4)   0.78 0.94   
Total Test (TT) 36/60 35.79 (59.7) 11.20 (18.7)    0.89   
a k  is number of items in a subscale or the total test and ms is the maximum score given the use of 
dichotomously scored multiple-choice items and polytomously scored open-response items. 
b Internal consistencies of the subtests and the total test are shown in italics along the principal diagonal 
of each correlation panel. 

 
Reading. The mean percentages revealed that students’ performance declined on the original 
three subtests as the complexity of the constructs increased. The standard deviations 
(percentages) were essentially the same for the Implicit Information and Connections subtests, 
which are at the two higher levels of complexity, but smaller than for the Explicit Information 
subtest, likely because of the smaller number of items and, therefore, total points for this 
subtest. As shown along the main diagonal of the correlation matrix on the right side of Table 1, 
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the internal consistency (alpha; Cronbach, 1951) of the Explicit Information subtest was much 
lower than the internal consistencies of the Implicit Information and Connections subtests, 
which were essentially the same. The low reliability of the Explicit Information is due to the 
relatively small number of items (6) in this subtest in comparison to the other subtests (18 and 
12, respectively). The estimate of the internal consistency of the total test was 0.87, reflecting the 
typical practice mentioned above of ensuring that the total test reliability is at an acceptable 
high level. The values of the correlations were either greater than the corresponding reliabilities 
or close in value, which suggests that the three procedures examined in this study will show 
that the subtests are not distinct and the subtests do not add value over and above the total test.   
 
Mathematics content area. The mean percentages revealed that the mean for the Algebra subtest 
was the highest, the mean on the Probability subtest was the lowest, and the means of the other 
three subtests were between and essentially the same. The standard deviations were somewhat 
larger for the Measurement and Geometry subtests than the standard deviations for the 
Numeration, Algebra, and Probability subtests, which were essentially the same. Given the 
numbers of items in each subtest did not differ much as they did in the case of Reading and 
Mathematics cognitive skills, the internal consistencies of the five content subtests were 
essentially the same, ranging from 0.58 to 0.63. However, as with Reading, the values of the 
correlations were close to the values of the reliabilities, suggesting again that the three 
procedures examined in this study will show that the subtests are not distinct and the subtests 

do not add value over and above the total test. Further, some of the values of KR and c jk  will 

exceed 1.00, which theoretically should not happen. 

Mathematics cognitive skills. Similar to Reading, the students’ performance on the three 
mathematics cognitive subtests declined as the level of required thinking increased from 
knowledge and understanding to application to problem solving. The standard deviations were 
essentially the same for the Application and Problem Solving subtests, which are of higher 
complexity, but smaller than the standard deviation for the knowledge and understanding 
subtest, again likely because of the smaller number of items in the latter subtest. The internal 
consistency of the knowledge and understanding subtest, 0.60, was lower than the internal 
consistencies of the Application and Problem Solving subtests, which were more alike, 0.75 and 
0.78, respectively. The somewhat low value of reliability for the knowledge and understanding 
subtest was likely due to the relatively smaller number of items (8) in this subtest as compared 
to the numbers of items in the other two subtests (15 and 13, respectively). The estimate of the 
internal consistency of the total test was 0.89, again reflecting the typical practice mentioned 
above of ensuring that the total test reliability is at an acceptable high level. Again, we see as for 
the Reading and Mathematics content areas that the values of the correlations are close to the 
values of the reliabilities, suggesting that the three procedures examined in this study will show 
that the subtests are not distinct and the subtests do not add value over and above the total test, 

with some of the values of KR and c jk  will exceed 1.00. 
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Accuracy and Precision of the Estimators 
The means and standard deviations of the 1,000 replications for each sample size are reported in 

Table 2 for the KR method, Table 3 for the c jk  method, and Table 4 for the PRMSE method. As 

shown in Table 2, all but two of the means of the sampling distributions of 1,000 replications 
across the pairs and sample sizes were within 0.01 of the corresponding population value of KR 
for each subtest pair and sample size (the difference is 0.02 for the Numeration and Probability 
subtest pair, with n = 250 and n = 500). The standard error of KR decreased as the sample size 
increased. For example, for n = 250 the standard errors were between 0.043 and 0.049, whereas 
for n = 5,000 the standard errors were between 0.009 and 0.011.  

 
Table 2. Accuracy and Precision: Kelley’s Ratio (KR) 

  Sample Size   

Subtest Pairs 250 500 1,000 2,000 5,000 Population 

Reading       
Exp Info–Imp Info 0.97 (0.049)a 0.97 (0.035) 0.97 (0.024) 0.97 (0.017) 0.97 (0.011) 0.97 
Exp Info–Con 0.92 (0.046) 0.91 (0.032) 0.91 (0.022) 0.91 (0.015) 0.91 (0.010) 0.91 
Imp Info–Con 0.96 (0.043) 0.95 (0.032) 0.95 (0.021) 0.95 (0.015) 0.95 (0.009) 0.96 

Mathematics Content Area      
Num–Mea 1.04 (0.051) 1.04 (0.035) 1.04 (0.025) 1.04 (0.017) 1.04 (0.011) 1.04 
Num–Alg 1.03 (0.050) 1.03 (0.034) 1.03 (0.025) 1.03 (0.016) 1.03 (0.011) 1.02 
Num–Prob 1.09 (0.050) 1.09 (0.037) 1.08 (0.026) 1.08 (0.026) 1.08 (0.011) 1.07 
Num–Geo 1.03 (0.049) 1.03 (0.037) 1.03 (0.025) 1.02 (0.017) 1.02 (0.011) 1.02 
Mea–Alg 0.98 (0.045) 0.98 (0.033) 0.98 (0.023) 0.98 (0.016) 0.98 (0.010) 0.98 
Mea–Prob 1.02 (0.046) 1.02 (0.032) 1.02 (0.024) 1.02 (0.017) 1.02 (0.010) 1.01 
Mea–Geo 1.02 (0.052) 1.03 (0.035) 1.02 (0.026) 1.02 (0.017) 1.02 (0.011) 1.02 
Alg–Prob 1.03 (0.049) 1.03 (0.033) 1.03 (0.024) 1.03 (0.017) 1.03 (0.010) 1.03 
Alg–Geo 1.00 (0.047) 1.00 (0.033) 1.00 (0.023) 1.00 (0.017) 1.00 (0.010) 1.00 
Prob–Geo 1.03 (0.048) 1.03 (0.034) 1.03 (0.023) 1.03 (0.017) 1.03 (0.011) 1.02 
Mathematics Cognitive Skill      
Kno/Und–App 1.04 (0.052) 1.04 (0.035) 1.04 (0.026) 1.03 (0.017) 1.04 (0.011) 1.04 
Kno/Und–Prob Sol 0.98 (0.049) 0.98 (0.031) 0.98 (0.024) 0.97 (0.018) 0.97 (0.011) 0.97 
App–Prob Sol 1.05 (0.048) 1.05 (0.035) 1.05 (0.024) 1.05 (0.018) 1.05 (0.011) 1.05 

 
a The first value is the mean and the value in parentheses is the standard deviation of the sampling 

distribution (i.e., standard error) of 1,000 replications. 

 

The means of the sampling distributions of ˆ
c jk  were within 0.01 of the corresponding 

population values of c jk  for all the pairs of subtests and sample sizes (see Table 3). The 

standard errors of sample estimators decreased as the sample size increased. For n = 250, the 
standard errors ranged between 0.029 and 0.081, whereas for n = 5,000, the standard errors were 
as low as 0.007 and as high as 0.017.  Given the low reliability of the Explicit Information subtest 
in the Reading assessment, the standard errors for the pairs involving this subtest were 
consistently higher than the standard errors for the remaining pairs of subtests. 
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Similar to KR and ˆ
c jk , the means of the distributions of sample estimators of 

τ / sPRMSE and 

τ/xPRMSE were within 0.01 of the corresponding population values for all four subtests (Table 

4). The standard errors of sample estimators were the largest when the Explicit Information 

subtest was considered (e.g., the standard error 0.100EPRMSE   for n = 250) but decreased as 

the sample size increased, ranging between 0.003 and 0.020 for n = 5,000. Taken together, the 

results provided in Tables 2, 3, and 4 reveal that sample estimates of  KR,  c jk , and 
τ / sPRMSE

and 
τ/xPRMSE  are accurate and precise. Therefore, any differences among the three detection 

methods used for the detection of subtest differences or subtest-total test differences are not 
confounded by presence of biased or imprecise estimators.  
 

Table 3. Accuracy and Precision: Correlation Corrected for Attenuation (
c jk ) 

   Sample size  Popu-
lation Subtest Pairs 250 500 1,000 2,000 5,000 

Reading       
Exp–Imp Info 0.99 (0.078)a 0.99 (0.051) 0.99 (0.037) 0.98 (0.026) 0.98(0.016) 0.98 
Exp Info–Con 0.90 (0.081) 0.89 (0.056) 0.89 (0.039) 0.89 (0.017) 0.89 (0.017) 0.89 
Imp Info–Con 0.97 (0.029) 0.97 (0.021) 0.97 (0.015) 0.97 (0.011) 0.97 (0.007) 0.97 
Mathematics Content Area      
Num–Mea 1.05 (0.054) 1.05 (0.037) 1.05 (0.026) 1.05 (0.018) 1.04 (0.012) 1.04 
Num–Alg 1.04 (0.062) 1.04 (0.042) 1.04 (0.031) 1.03 (0.020) 1.03 (0.014) 1.03 
Num–Prob 1.09 (0.051) 1.09 (0.038) 1.09 (0.027) 1.09 (0.018) 1.09 (0.012) 1.09 
Num–Geo 1.03 (0.058) 1.03 (0.040) 1.03 (0.029) 1.03 (0.021) 1.03 (0.013) 1.03 
Mea–Alg 0.98 (0.062) 0.97 (0.045) 0.97 (0.032) 0.97 (0.022) 0.97 (0.014) 0.97 
Mea–Prob 1.02 (0.055) 1.02 (0.038) 1.02 (0.028) 1.02 (0.020) 1.02 (0.013) 1.02 
Mea–Geo 1.02 (0.062) 1.03 (0.041) 1.03 (0.031) 1.03 (0.020) 1.03 (0.013) 1.03 
Alg–Prob 1.04 (0.064) 1.04 (0.043) 1.04 (0.030) 1.04 (0.022) 1.04 (0.013) 1.04 
Alg–Geo 0.99 (0.066) 1.00 (0.046) 0.99 (0.033) 0.99 (0.023) 0.99 (0.014) 0.99 
Prob–Geo 1.04 (0.059) 1.03 (0.042) 1.03 (0.029) 1.03 (0.021) 1.03 (0.014) 1.03 

Mathematics Cognitive Skill      
Kno/Und–App 1.04 (0.047) 1.04 (0.031) 1.04 (0.023) 1.04 (0.016) 1.04 (0.010) 1.04 
Kno/Und–Prob Sol 0.99 (0.048) 0.99 (0.031) 0.98 (0.023) 0.98 (0.016) 0.98 (0.010) 0.98 
App–Prob Sol 1.03 (0.026) 1.03 (0.018) 1.03 (0.013) 1.03 (0.009) 1.03 (0.006) 1.03 
 

 a The first value is the mean and the value in parentheses is the standard deviation of the sampling 
distribution (i.e., standard error) of 1,000 replications. 

 

Detection of Performance Differences and Consistency of Decisions  
As foreshadowed in the presentation of the psychometric properties of the subtests and total 
test and as revealed by the results in Tables 2, 3, and 4, the subtests were determined to be not 
distinct nor did the subtests add value over the total test. The values of KR were close to one 
with one exception (Reading, Explicit Information and Connections subtests; Table 2). Further, 
11 of the 16 KR values exceeded one, which theoretically should not happen. For the agreement 
procedure to work, the sum of the reliabilities of the two subtests has to be greater than two 
times the correlation between the two subtests being compared. This was not the case with the 
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subtests considered in the present study, with the sum of the reliabilities in the 11 cases being 
less than two times the corresponding correlations.  

The decision rule for the method of correlations corrected for attenuation is a value less than 
0.90 indicates that the two subtests being correlated are sufficiently different to warrant 
reporting the scores on each (McPeek et al., 1976). With one possible exception (Reading, 
Explicit Information and Connections subtests; Table 3), the values of ˆ

c jk  exceeded 0.95, with 

10 of the 16 values being greater than 1.00, which theoretically should not happen. The decision 

rule for the PRMSE method is: if
τ / s τ/xPRMSE > PRMSE , then the subtest has added value over 

and above the total test and, therefore, the score on the subtest should be reported. As shown in 

Table 4, for all subtests, 
τ / s τ/xPRMSE < PRMSE . For both the c jk and PRMSE methods, the 

reliabilities of the subtests must be high, which was not the case in the present study. 

In the case of Reading, with perhaps one exception, the decisions made using population values 

of KR and c jk  were that the subtests did not differ, and the population values of τ / sPRMSE

and τ/xPRMSE indicated that the three subtests did not add value over the total test. For the 

Explicit Information and Connections pair of subtests, KR suggested that there was a difference 

beyond chance for 5% of the students, and that the value of c jk , 0.89, was just less than 0.90. 

The sample data revealed that with exception of two subtest pairs, Explicit Information and 
Connections and Explicit Information and Implicit Information with n = 250 and n = 500, the 
same decision was made using sample data for at least 91% of the replications using the KR, 

c jk , and PRMSE methods across the different sample sizes. In the case of the Explicit 

Information and Connections pair, the decision consistency for ˆ
c jk  varied from 51.4% to 78.8% 

across the five sample sizes (i.e., 514 of the 1,000 replications led to the same decision made at 
the population level). This finding is attributable to the low reliability of the Explicit 

Information subtest, 0.47, and the observation that the value of c jk  was only 0.01 below the 

decision value of 0.90. In the case of the Explicit and Implicit Information pairs, the decision 
consistency for n = 250 was 90.5% and for n = 500, 95.1%, while for 1,000n  the decision 

consistencies were 99.1%, 100%, and 100%.  

In the case of Mathematics, KR and c jk  indicated that there were no distinct subtests and 

τ / sPRMSE  and τ/xPRMSE indicated that no subtest added value over the total test. Further, the 

majority of values for KR were greater than 1.00 due to the fact that the sum of the reliabilities 
was greater than two times the uncorrected correlation. Similarly, the majority of the values for

ˆ
c jk  were greater than 1.00 due to the fact that the square root of the product of the reliabilities 

was less than the uncorrected correlation between the pairs of subtests. The sample data 
revealed that, with three exceptions, Measurement and Algebra with n = 250 and n = 500 and 
Algebra and Geometry with n = 250, the same decision was made using sample data for at least 

97% of replications using the KR and c jk  methods and, in the case of the subtest-total test 

pairs, the PRMSE method. The exceptions included the Algebra subtest, which had the lowest 
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reliability out of the all Mathematics subtests. Again, as for Reading, the sample values of the 
correlations were close to the sample values of the reliabilities, and in the majority of cases the 
two times the correlation exceeded the sum of the reliabilities, leading to sample estimates 
greater than 1.00.  
 

Table 4. Accuracy and Precision: Proportional Reduction of the Mean Squared Error (PRMSE) 

   Sample Size  Popu-
lation Subtest/PRMSE 250 500 1,000 2,000 5,000 

Reading       
Exp 
Info          
                              

τ / sPRMSE   0.47 (0.054)a 0.47 (0.038) 0.47 (0.027) 0.47 (0.020) 0.47 (0.012) 0.47 

τ/xPRMSE  0.80 (0.100) 0.79 (0.065) 0.79 (0.047) 0.79 (0.033) 0.79 (0.020) 0.79 

Imp 
Info           

     

τ / sPRMSE  0.76 (0.023) 0.76 (0.016) 0.77 (0.011) 0.77 (0.008) 0.77 (0.005) 0.77 

τ/xPRMSE  0.87 (0.017) 0.87 (0.013) 0.87 (0.008) 0.87 (0.006) 0.87 (0.004) 0.87 

Con                 
τ / sPRMSE  0.73 (0.023) 0.73 (0.016) 0.73 (0.011) 0.74 (0.008) 0.74 (0.005) 0.74 

     
τ/xPRMSE  0.85 (0.020) 0.85 (0.014) 0.85 (0.010) 0.85 (0.007) 0.85 (0.004) 0.85 

Mathematics Content Area 
Num              

 
 

τ / sPRMSE  0.63 (0.028) 0.63 (0.019) 0.63 (0.015)  0.63 (0.010) 0.63 (0.006) 0.63 

     
τ/xPRMSE  0.94 (0.037) 0.94 (0.025) 0.94 (0.019) 0.94 (0.012) 0.94 (0.008) 0.94 

Mea             
   

 
τ / sPRMSE  0.63 (0.029) 0.63 (0.024) 0.63 (0.015)  0.63 (0.010) 0.63 (0.006) 0.63 

     
τ/xPRMSE  0.90 (0.042) 0.90 (0.031) 0.90 (0.021) 0.89 (0.014) 0.89 (0.009) 0.89 

Alg                  
τ / sPRMSE  0.58 (0.038) 0.58 (0.025) 0.58 (0.019)  0.58 (0.013) 0.58 (0.008) 0.58 

     
τ/xPRMSE  0.89 (0.055) 0.88 (0.039) 0.88 (0.027) 0.88 (0.019) 0.88 (0.012) 0.88 

Prob                
τ / sPRMSE  0.61 (0.032) 0.61 (0.022) 0.61 (0.019)  0.61 (0.011) 0.61 (0.007) 0.61 

     
τ/xPRMSE  0.94 (0.042) 0.93 (0.029) 0.93 (0.020) 0.93 (0.015) 0.93 (0.009) 0.93 

Geo                 
τ / sPRMSE  0.60 (0.033) 0.60 (0.024) 0.60 (0.017)  0.60 (0.011) 0.60 (0.007) 0.60 

     
τ/xPRMSE  0.90 (0.045) 0.90 (0.031) 0.90 (0.023) 0.90 (0.016) 0.90 (0.010) 0.90 

Mathematics Cognitive Skill 
Kno/ 
Und 

     

τ / sPRMSE  0.60 (0.038) 0.60 (0.026) 0.60 (0.019)  0.60 (0.013) 0.60 (0.008) 0.60 

τ/xPRMSE  0.90 (0.055) 0.89 (0.036) 0.89 (0.027) 0.89 (0.018) 0.89 (0.012) 0.89 

App                 
τ / sPRMSE  0.75 (0.019) 0.75 (0.013) 0.75 (0.010) 0.75 (0.007) 0.75 (0.004) 0.75 

     
τ/xPRMSE  0.91 (0.016) 0.91 (0.011) 0.91 (0.008) 0.91 (0.005)  0.91 (0.004) 0.91 

Prob 
Sol          

     

τ / sPRMSE  0.78 (0.017) 0.78 (0.012) 0.78 (0.009) 0.78 (0.006) 0.78 (0.004) 0.78 

τ/xPRMSE  0.89 (0.014) 0.90 (0.010) 0.90 (0.007) 0.90 (0.005)  0.90 (0.003) 0.90 
 

         

        a The first value is the mean and the value in parentheses is the standard deviation of the sampling  
      distribution (i.e., standard error) of 1,000 replications.  
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Taken together, the results provided in Tables 2, 3, and 4 revealed that there were no differences 
among the abilities of the three detection methods to detect subtest differences or subtest-total 
test differences. Kelley’s agreement and correlations corrected for attenuation methods led to 
the same decisions regarding the identification of pairs of distinct subtests. Likewise, Kelley’s 
agreement and proportional reduction of the mean squared error methods led to the same 
decisions about subtests having added value over the total test. Specifically, the decisions were 
that the subtests did not differ among themselves and the subtests did not add value over the 
total test. 
 

Conclusion and Implications for Practice 
 
Whether or not to report subtest results is an important topic that has immediate practical 
implications. Given a profile of subtest scores, teachers and school counsellors can identify areas 
of strength and areas that need to be addressed for individual students. Similarly, changes in 
curriculum and instruction designed to maintain strength and address issues at the school and 
class levels can be made to improve student learning and achievement.  

Subscore reporting will most likely be enhanced if subtests are specifically developed to 
measure a multidimensional construct or domain. The subdomains to be assessed must be 
clearly defined and, if supportable, weakly to moderately correlated. The number of items used 
to assess each dimension or subdomain must be large enough to ensure an adequate level of 
reliability. The correlations between the subtests examined in the present study were moderate 
to moderately strong and the reliabilities of the subtests were not high, resulting in reliabilities 
and correlations being similar in value. 

But it seems reasonable to assume that the values of the correlations for the pairs of subtests in 
the present study are likely to be found in other large-scale assessments of achievement in the 
school system. Consequently, given this assumption, it is necessary to increase the reliabilities 
of the subtests. For example, assuming the median observed correlation among Mathematics 
content subtests in the present study, 0.63, the percentage of students who would be identified 
with subtest differences beyond chance using the agreement method would be approximately 
5% if the reliability of the two subtests was 0.70, 9% if the reliability of the two subtests was 
0.75, 15% if the reliability of the two subtests was 0.80, and 20% if the reliability of the two 
subtests was 0.85. Likewise, for the correlations corrected for attenuation and the proportional 
reduction of the mean squared error methods, pairs of subtests are most likely to be found 
distinct and subtests are most likely to have value over and above the total test if the subtests 
have relatively high reliabilities and the true subtest scores and the true total scores have only 
moderate correlations. The results for replicated random samples (n = 250, 500, 1,000, 2,000, and 
5,000) revealed that the statistics for the three detection methods were accurate and precise 
estimators of the corresponding population parameters. 
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