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Abstract. The practice of generalization is a powerful process that 
should be present in mathematical learning from kindergarten to 
college. It is crucial for teachers at all school levels to have a deep 
understanding of the process down to knowing its genetic 
decomposition. Activity theory framework provides basic principles 
that allows us to define generalization as an activity that is socially and 
historically developed through tools and artifacts mediations, 
internalization of social knowledge, and that is transformed through 
learning and development I present the means of the generalization 
activity using Leontiev‟s activity theory intertwined with Rubinshtein‟s 
description of the generalization process. This theoretical framework 
may also support teacher educators and teachers while they use high-
leverage teaching practices such as: eliciting and interpreting individual 
student‟s thinking, diagnosing particular common patterns of student 
thinking and development, or leading a group discussion. 
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Introduction 
In mathematics, we are well used with statements as the following ones: 
 

1. Find the general term for the sequence: 1, 5, 9, 13, 17, … 
2. Find a formula for computing the measure of the interior angle of a 

regular polygon with n sides. 
3. Consider the sequence defined recursively by  

   

x1 = 2

xn = 2 + xn-1

 

Find an explicit formula for the nth term. 
4. The sum of any two consecutive integers is odd. 
5. The segment connecting the midpoints of two sides of a triangle is 

parallel to the third side and is half as long. 
6. The first derivative of an increasing function is positive. 
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From a mathematician‟s perspective, these statements request mathematical 
computations; from a psychologist‟s perspective, the statements demand a 
higher level of thinking; for mathematics educator‟s perspective, these 
statements are learning outcomes of a complex process. All three perspectives 
have a common target: the process of generalization.  
 
As mathematics teacher, I see the above statements divided into two categories 
of generalization. The first category of problems (1, 2, and 3) asks to search for a 
general statement and the second category (4, 5, and 6) asks to search for a 
generalization process. We use to teach and to learn these categories as represent 
different mathematical entities. However, they are parts of the same process: the 
process of generalization. 
 
As mathematicians, we are so used to focus on content and reasoning 
development when we learn and teach mathematics, and we seem to forget that 
generalization is the “heartbeat” of mathematics (Mason, 1996): 

“Generality is so central to all of mathematics that many 
professionals no longer notice its presence in what is, for them, 
elementary. But, it is precisely the shifts of attention that experts 
have integrated into their thinking, which are problematic for 
novices.” (Mason, 1996)  
 

Mason stresses that mathematicians, teachers, and even mathematics educators 
are too used to perform some thinking processes and they become unaware of 
them. Consequently, we need to become aware that the process of generalization 
is one of the most powerful thinking processes, and to understand its 
decomposition when we examine a mathematical situation. 

 
From Literature Review 
In the mathematics literature, generalization can be seen as a statement that is 
true for a whole category of objects; it can be understood as the process through 
which we obtain a general statement; or it can be the way to transfer knowledge 
from one setting to a different one.  Most of the studies that looked at the place 
of generalization in mathematics instruction choose to analyze the introduction 
of algebra to young students. There are studies that researched how to create 
activities for “awakening of pupil sensitivity to the nature of mathematical 
generalization and dually, to specialization” in order to improve students‟ 
algebraic thinking. In other words, how to get students comfortable to see “a 
generality through the particular” and “the particular in the general” (Mason, 1996). 
Lee (1996) considers that functions, modeling, and problem solving are all types 
of generalization and proposes that algebra should be taught through patterns. 
  
Another set of studies on generalization is researching ways to develop algebraic 
thinking at the elementary school children. J. J. Kaput, D. W. Carraher, and M. L. 
Blanton (2008) brought a comprehensive collection of research studies together 
that investigated the introduction of early algebra in elementary school in which 
generalization plays a crucial role. Note that the contributors to that volume 
consider “early algebra” a context to develop the potential for generalization at 
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elementary schoolchildren and not the introduction of algebra concepts in the 
early school years. This is a crucial difference highlighted by Kaput. Early 
algebra focuses on making elementary students comfortable with the process of 
generalization, which enhances algebraic thinking. 
 
From outside of the mathematics education field, many educational 
psychologists researched how the thinking process manifests through the 
process of generalization. Vygotsky (1986) considered that every concept is the 
result of a process of generalization. He emphasized the distinction between 
spontaneous/everyday concept, where the generalization means to move from 
particular to general, and scientific concept, which means to see the particular 
from the general. Piaget (1964) considered two different experiences that 
promote learning: 1) the physical experience that consists in manipulation of 
objects and in drawing some knowledge by abstractions from the objects; 2) the 
logical-mathematical experience in which knowledge is drawn by abstracting from 
the actions effectuated upon the objects. Rubinshtein (Davydov, 1990) made the 
difference between two types of generalization: the empirical generalization that is 
the result of comparing and identifying the external characteristics that are 
similar or identical to things; and the theoretical generalization that is the result of 
analysis and abstraction that happen while the data received through senses is 
transformed in order to determine the essence of things. Krutetskii (1976) 
identified two ways in which schoolchildren learn mathematical concepts 
through generalization. The first method is the empirical generalization, which 
consists in a gradual generalization by analyzing a sequence of concrete 
examples in which the nonessential attributes are systematically changed. This 
method is used by the children that are not or almost not successful in 
mathematics learning to master the general mathematical knowledge. The most 
successful children in learning mathematics are using a different way to 
approach the generalization. They are able to generalize a solution, which is 
unique to a theoretical generalization, just from a single example by identifying the 
internal connections/relationships involved in the solution.  
 
In the book, Types of Generalization in Instruction: Logical and Psychological 
Problems in the Structuring of School Curricula (1990), V. V. Davydov discussed his 
concern that the empirical generalization used in traditional Russian instruction 
is one of the sources that create difficulties for schoolchildren to master the 
instructional material. Regarding the case of mathematics, Davydov used the 
findings of Krutetskii‟s research on mathematical abilities to propose a 
generalization-based instruction at the elementary school levels. Several 
experimental studies conducted in the Unites States (Dougherty & Slovin, 2004; 
Moxhay, 2008; Schmittau, 2003; Schmittau, 2004) based on Davydov‟s 
instructional theory showed that the participating children were able to perform 
theoretical reasoning based on generalization by the end of the second or third 
year of instruction.  
 
Analyzing the studies that were done so far from the lens of a teacher that looks 
to find ways to help students finalize a generalization process, I noticed that: the 
term “generalization” is heavily loaded in mathematics. Even if we consider that 
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it is most commonly understood as a duality between going from particular to 
general and seeing the particular through the general, this interpretation does 
not include a description for the reasoning involved in the process of 
generalization that would allow teachers and educators to design a 
generalization-based instruction. 
  
In my quest to understand the needs of pupils to achieve higher-level thinking, 
which implies generalization, I found the theories developed by the educational 
psychologists A. N. Leont‟ev (1903-1979), Krutetskii (1917-1991), S. L. 
Rubinshtein (1889-1960), and Dubinsky to provide a supportive background. 
From their perspectives, I will interpret the process of generalization in 
mathematics as follow:  

 
1) An activity system that contains specific actions and operations (in the 

way Leont‟ev [1978] defined the concepts of activity, action, and 
operation);  

2) It has two specific motives:  
a. to identify something general that is already known in particular 

cases and to apply the general to the particular, and 
b.  to find something general that is not known from isolated and 

particular cases (as Krutetskii [1976] discovered in his research on 
schoolchildren mathematical abilities); 

3) It has three main ways to be performed: empirical generalization, 
pseudo-generalization, and reflective generalization (which are the three 
“routes” to generalization described by Rubinshtein [Davydov, 1990], 
where I incorporate the definitions of empirical abstraction, pseudo-
abstraction, and reflective abstraction given by Dubinsky [1991]). 

 
Next, I will discuss these theories as a framework, which may provide 
foundation for developing the pedagogical content knowledge needed to 
construct settings for students to participate in a activity of generalization.  

 
Theoretical Framework 
Vygotsky considered that all the concepts learned by humans become 
internalized through a process of generalization. He classified the internalized 
concepts into spontaneous/everyday concepts and scientific concepts. The 
spontaneous/everyday concepts are created by child‟s personal experience, and they 
can form without systematic instruction. The scientific concepts are what the child 
cannot directly observe or experience. They should be taught to the child by 
creating conditions in which the child studies the formation of an “artificially 
devised experimental concept” (Vygotsky, 1986, p. 161). The two types of 
concepts form a unitary process; they are continuously related, and reciprocally 
contribute to each other‟s development. The overall development of a child and 
learning are two simultaneous processes that depend qualitatively on each other 
(Vygotsky, 1986). The qualitatively duality between development and learning is 
essentially based on the types of experiences that the child has. The everyday 
experience of a child provides knowledge from a direct physical contact with the 
environment when the child uses his/her senses to analyze, compare, classify, 
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and synthesize. Through a systematic instruction, the child experiences 
“artificially designed” situations where in collaboration with another more 
knowledgeable peer or an adult he/she analyzes, compares, classifies, and 
synthesizes at a high psychological level and the child travels his/her Zone of 
Proximal Development (ZPD) (Vygotsky, 1978).  
 
Besides the strong opinion that Piaget had against Vygotsky‟s theory about the 
duality of the development and learning (Piaget, 1964), he also identified, similar 
to Vygotsky, two different experiences that a child should go through during a 
learning process: physical experiences and logical-mathematical experiences. First, 
there are physical experiences that consist on having direct contact with objects. 
During this experience, knowledge is drawn from the physical properties of the 
object by making abstraction from them. Second, there are logical-mathematical 
experiences, in which knowledge is drawn through actions effectuated on objects. 
The objects are physically present, but there is also the set of actions that modify 
the objects, which transforms the process into a learning experience. 
 
Vygotsky‟s and Piaget‟s perspectives on learning are complementary to each 
other in the following way: Every day concepts are predominantly learned 
through physical experiences, where scientific concepts are predominantly 
learned through logical-mathematical experiences. Rubinshtein‟s theory of 
thought and Krutetskii‟s work on schoolchildren abilities also support this 
combined theory of learning. 
 
Rubinshtein divided human thoughts into empirical/visual thoughts and 
theoretical/abstract thoughts. The empirical thought is the result of comparing 
and identifying the external characteristics that are similar or identical in things. 
The theoretical thought is the result of analysis and abstraction that arise while 
the data received through senses is transformed in order to determine the 
essence of things.  
 
Krutetskii, through his research on schoolchildren mathematical abilities, was 
able to provide concrete examples of children thinking that reflect the two 
categories of thoughts described by Rubinshtein. Krutetskii (1976) discovered 
two ways in which schoolchildren learn mathematical concepts through 
generalization. The first method, named empirical generalization, consists in a 
gradual generalization by analyzing a series of concrete examples in which the 
nonessential attributes are systematically changed. The children, who are not or 
almost not successful in mathematics learning, use this method in order to 
understand general mathematical knowledge. The most successful children in 
learning mathematics are using a different way to approach the process of 
generalization. They do a theoretical generalization. They are able to generalize a 
solution just from a single example by identifying the internal 
connections/relationships involved in the task. These children are generalizing 
solutions and methods to approach a problem instead of generalizing particular 
or external aspects of a problem.  
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The experiment conducted by Krutetskii and his collaborators was quite 
sophisticated and laborious. He selected schoolchildren from 6th and 7th grade 
that did not receive any instruction in algebra. An experimenter taught a child 
the way in which the square of a binomial may be obtained through “the 

formula for short multiplication”, that is: 

  

a+ b( )
2

= a2 + 2ab+ b2. Then, the child 

was asked to solve a sequence of tasks similar with the following: 
 

1. 

  

a+ b( )
2

= 

2. 

   

1+ a3b2( )
2

= 

3. 

  

-5x + 0.6xy2( )
2

= 

4. 

  

3x - 6y( )
2

= 

5. 

  

m + x + b( )
2

= 

6. 

  

4x + y3 - a( )
2

= 

7. 

  

512 = 
8. 

  

C +D+ E( ) E +C +D( ) = 

      
The order of these examples depended on their level of generalization. After the 
child who was interviewed became familiar with the short multiplication 
formula for the square of a binomial, the experimenter asked the child to solve 
task 8. If the child was not able to solve it correctly, the experimenter proposed 
task 2 and, if it was necessary, helped the child to become comfortable solving 
these types of problems. Then, again, the experimenter asked the child to solve 
task 8. If the child was not successful, the experimenter showed task 3. The 
procedure was repeated until the child solved correctly the task 8. Krutetskii 
analyzed the number of iterations needed for each child. The findings of this 
analysis revealed that the children who used a theoretical generalization, at 
some point during the interview, were able to solve example 8 faster than the 
ones who based their method of solving the problems only on empirical 
generalization.  
 
For example, one child was able apply correctly the short formula for the square 
of a binomial right after experimenter‟s presentation. Therefore, through 
interaction with the experimenter, the child learned a scientific concept: 

  

a+ b( )
2

= a2 + 2ab+ b2.  Next, a new situation is presented to the child, the 

product 

  

C +D+ E( ) E +C +D( ). First, the child analyzed the external 

characteristics of this example and from this physical experience he learned that 
it is not a binomial, and it is not a square. He had a strategy in mind for solving 
the problem, but it was a laborious one. He said: “But that will be 9 terms. That‟s 
a lot.” This triggered him to transform the row data. The child started now to 
experience a logical-mathematical process. He commuted the first term E from 
the second parenthesis from the first place to the last one and obtained: 

  

C +D+ E( ) C +D+ E( ) = C +D+ E( )
2

 , the child transformed the information 

given. Next, he grouped the last two terms together and obtained: 
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C + D+ E( )[ ]
2
. At this moment, the child ignored the physical characteristic of 

  

D+ E( ) therefore he performed an abstraction. It was essential for the child that 

  

D+ E( ) had the role of the second term in the expression 

  

C + D+ E( )[ ]
2
. From 

this point, all the conditions needed to use the short multiplication formula for 
the square of a binomial were satisfied, and the child solved the example 
correctly.  
 
The thinking process of the child from previous example is a clear representation 
of the complementarity of Vygotsky‟s and Piaget‟s views about the learning 
process. At the beginning, the child in his/her interaction with an adult learned 
a scientific concept: the short multiplication formula for the square of a binomial. 
Then the child came to learn a new concept, a spontaneous one, which was the 
short formula for the square of a trinomial by physical contact with a new 
example and by logical/mathematical transformations of this example. 
 
Things happened different with another child. In this case, the child became 

comfortable to solve problems of the form 

  

a+ b( )
2
 and was able to solve 

correctly the example 

  

2x + y( )
2

= 4x2 + 2 × 2x × y + y2 = 4x2 + 4xy + y2. But when 

the child saw the example 

   

1+
1

2
a3b2

æ 

è 
ç 

ö 

ø 
÷ 

2

, he/she said that this is different because 

a and b are not separated by „+‟. The child wrote 

   

1

4
a6 + 2

1

2
a3b2 + b4, which 

shows that the child was able to manipulate physically the parts of a squared 
binomial only if they are externally identical (in this case each term had to 
contain a letter) with the parts of the given formula. 
 
The previous example shows that the child was not able to overcome the 
physical experience and enter in the realm of the logical-mathematical 
experience by himself. Therefore, from Piaget‟s perspective the child did not 
complete the learning process since he was not able to generalize the short 
multiplication formula for the square of the binomial. From Vygotsky‟s 
perspective, the child should develop his Zone of Proximal Development by 
interaction with an adult in order to learn the scientific concept of the short 
multiplication formula for the square of the binomial.  
 
A conclusion that Krutetskii drew from his experiment was that the mental 
actions, used by the successful children in order to make generalizations, are 
qualitatively higher than the ones used by the children that are not successful in 
math. The successful children are performing theoretical generalizations while 
the less successful children are getting stuck in empirical generalizations. The 
ability to do theoretical generalizations helps the schoolchildren, from the first 
group, to solve problems that are different in context and to overcome situations 
that are new to them. The absence of this ability makes the children to be afraid 
to tackle anything that is not familiar to them.  
 In the book Types of Generalization in Instruction: Logical and Psychological 
Problems in the Structuring of School Curricula (1990), V. V. Davydov discusses his 
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concern that the empirical type of generalization used in traditional Russian 
instruction is one of the sources that create difficulties for schoolchildren to 
understand the instructional material. Regarding the domain of mathematics, 
Davydov is using the findings of Krutetskii‟s research on mathematical abilities 
to examine the effect of Russian traditional instruction on schoolchildren 
mathematical thinking. He analyzed how the concept of number is developed in 
traditional Russian instruction. He looked at Russian‟s first grade textbooks, at 
the methods books used to prepare teachers for elementary school, and 
interviewed first-grade students. Davydov found that many of the 1st grade 
students were not able to comprehend the unit as a relationship between the 
physical parts of an object and the action of measurement. Davydov wrote: 
 

“Solving the essential problems in contemporary school education is 
ultimately linked to changing the type of thinking that is projected by the 
goals, content, and methods of instruction. The entire instruction system 
must be reoriented from the children‟s development of rational-empirical 
thought to their development of modern theoretical scientific thought.” 
(Davydov, 1990) 

 
With his colleague El‟konin, Davydov designed a content-based generalization 
curriculum for the elementary school. Their approach of instruction was 
considered at that time, and it still continues to be regarded today, as „quite‟ 
exotic because: 
 

“The „technique‟ of forming content-based generalization is quite 
different from the one that is peculiar to empirical generalizations. A 
transforming, object-related action and an analysis that establish essential 
connections in an integral entity, its genetically original (universal) form, 
rather than observation and comparison of the external properties of 
objects (traditional visuality), serve as the basis for this process. Here, 
discovery and mastery of the abstract and universal precedes mastery of 
the concrete and particular, and the concept itself as a certain method of 
activity serves as a means of ascending from the abstract to concrete.” 
(Davydov, 1990) 

 
The mathematics curriculum designed by Davydov was oriented toward 
children‟s formation of content-based abstractions and the development of 
theoretical thought. The goal of the curriculum was to create a theoretical 
understanding of the real number, which is the concept of quantity. First grade 
students begin their experience by measuring, comparing different quantities by 
singling out their basic properties. They analyze the relationships that exist 
between and within quantities, and they start to record them using symbols, 
which are letters for quantities and signs (e.g., =, <, >) for relationships between 
quantities.  Next, the children analyze the changes that may occur in a quantity 
and they indicate the change by using the signs „+‟ or “-“. Only after these 
experiences, the children are introduced to the number concept as a way of 
representing a relationship among quantities: 

 A/C=N, where N is any number, A is any object represented as a 
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quantity, and C is any measure. (Davydov, 2008) 
 

This definition implies that any number is the result of a measurement. If we 
have an object and we see the object just through one of its measurable features 
(e.g., a segment is represented by its length) and we have a measure (e.g., a paper 
clip), then the result of measurement is a number (e.g., the result of measuring 
the length of the segment with the paper clip is a number). 
  

The following example shows how the concept of whole numbers multiplication 
may be introduced by using content-based generalization curriculum. A teacher 
brings in front of the children a large and heavy bucket filled with water a very 
small cup. He asks them to find out to how many rabbits they can give water if 
each rabbit would get one small cup of water. The students give the answer right 
away: they need to measure the water from the bucket with the small cup. A 
child starts measuring and counting the glasses. The work is laborious, and it 
will last a long time to be done. In the process, some of the water spilled over so 
the teacher points out that the measuring will not be accurate. But children 
continue the work, and are happy with their solution, even if it would take the 
whole class to finish the job, and even if the number found would not represent 
exactly the number of rabbits. Teacher‟s responsibility is to reorient the children 
from having only physical experience to start having a logical-mathematical 
experience. He points out how inefficient is the procedure performed by the kids 
because of the little unit that they are using to measure the water. However, the 
problem has to be solved. Therefore, the students have to “think” to find another 
method that will provide an answer faster and more accurate. After several 
trials, the teacher suggests setting aside this problem, and trying to solve another 
situation. This time, the children have to find out from how many bricks were 
used to build the wall shown in a picture that hangs in front of the classroom. 

The side of the wall from the picture is 52 cm  75 cm, and it is made out of 

bricks represented by rectangles of the dimensions 2 cm  3 cm. Children start to 
count the bricks from their sits straggling to keep the counting strait. Teacher 
notices how hard it is to count the bricks from faraway, so he calls a student to 
come closer and count the bricks. The whole class follows the student‟s 
counting. They would have continued counting because in this way they would 
find the number of bricks in the wall, but the teacher stops them and makes 
them understand how long time they have to spend counting even if they are 
extremely good counters. This is another situation, beside the first one where 
they had to count the little glass of water, in which the method of counting takes 
too much time to find the answer, and many mistakes can be made during the 
process.  
 
The teacher‟s intention is to motivate the children to look for another method to 
solve the problem. He wants to make his students look for a method that 
requests more than just physical experiences. The teacher has to guide his 
students through a setting that may contribute to the development of their 
ability to have a logical-mathematical experience. First, the teacher does not let 
the students find the answer by counting and points out how the counting 
method is time consuming and inefficient. Second, he asks children to “think,” 
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to search for another method, even if they are not able to provide satisfactory 
answers. However, the setting is created for children to reach their Zone of 
Proximal Development and the teacher leads them to the most expected logical-
mathematical experience.  
 
In the next part of the lesson, the teacher asks children to do a series of actions 
that transform the process of counting with the little cup. He shows them that if 
they use a bigger unit of measure, a mug, it is easier to measure the water from 
the bucket. Then he leads children to discover the relationship between the mug 
and the little cup. At the end, children are able to find by themselves the total 
number of the little cups that filed the bucket by using the new method.  
 
 If we go back at the beginning of the lesson and look for its outline, we can 
clearly identify the theoretical background. First, the teacher created the setting 
that position the students in their ZPD (Vygotsky), he makes sure that students 
have physical and logical–mathematical experiences (Piaget), and he focuses on 
having his students generalize methods of solving (Krutetskii). 

 
I started this section by presenting some theoretical perspectives on learning and 
at the end I presented an example of a lesson created on the foundation of these 
theories. This section was an example of how a theoretical framework can 
inform and transform teaching practices. In the next part, I will take a similar 
approach and I will present a way to think about generalization in mathematics 
that may be a theoretical framework to support teacher educators and teachers 
while they research and use high-leverage teaching practices such as eliciting 
and interpreting individual student‟s thinking, diagnosing particular common 
patterns of student thinking and development, or leading a group discussion. 

 
A Definition for Generalization in Mathematics 
The concept of generalization is most commonly understood as a duality 
between going from particular to general and seeing the particular through the 
general. In order to provide an understanding of the thinking involved in a 
mathematical generalization process, I describe in this section the process of 
generalization from the perspectives of the theories developed by the 
educational psychologists A. N. Leont‟ev (1903-1979), Krutetskii (1917-1991), and 
S. L. Rubinshtein (1889-1960), and of contemporary mathematics educator Ed 
Dubinsky.  
 
The Human Activity in Leontief’s Interpretation 
Leont‟ev (1978) defined human activity as “a process in which mutual transfers 
between two poles “subject-object” are accomplished” (p. 50). Also, Leont‟ev 
stressed that an activity has to be understood as “a system that has structure, its 
own internal transitions and transformations, its own development” (p. 50). An 
activity is not a reaction or a set of reactions to different conditions. For an activity 
to occur, it has to be a need for something. When the need is “disclosed” it 
becomes a motive for the activity (p. 116). In other words, when the decision to 
satisfy a need is taken, the need becomes a motive for an activity. From this 
perspective, an activity and its motive are “necessarily” connected (p. 62). 
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Furthermore, a need is the motive that triggers an activity. The goal of the 
activity is to satisfy the need. Most of the times, the goal of an activity cannot be 
attained through a single process. Therefore, it has to be divided into a series of 
sub-goals and a sequence of goal-oriented processes has to be constructed. Each 
of these processes is an action subordinated to a particular purpose. At its turn, 
each action is performed through a set of rules and laws (named operations) that 
had been historically established. These operations are applied to the particular 
conditions imposed by the purpose of the action. In conclusion, the transfer 
between the two poles, subject and object, generates the interaction between the 
subject, represented by the subsystem {need, motive, goal, purpose, conditions}, 
and the object, represented by the subsystem {activity, actions, operations}. 
Harry (2008, p.119) used the following graphical representation in order to 
capture the characteristics of an activity with their interactions. 

                                               

 
Figure 1: The schematic representation of an activity, Harry (2008, p. 119). 

 
I will consider a similar schematic representation of an activity, which is given in 
Figure 2. In this schemata, the interaction between “subject” and “object” is 
represented through arrows that should be read in the following way: 
 

 a need triggers a motive;  

 the motive triggers an activity; 

 the activity is associated with a genetic goal that is subordinated to the 
need;  

 the generic goal triggers an action or a chain of actions;  

 each action is associated with a purpose that is subordinated to the 
generic goal; 

 each action consists in performing a set of operations. 
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Figure 2: The schematic representation of a system that is characteristic to an activity 

 
Let us expand of Leontief‟s example of learning to drive a car (Leontief, 1978, p. 
66). I live in a house located at the position A, and my work place is located at 
the position B. Each weekday, I have to go from my house to my work place. 
Therefore, I need to commute from A to B. This need that I have identified has to 
be satisfied through an activity that I should perform. There are several activities 
that I can perform to move myself from point A to point B, e.g., walking, biking, 
driving a car, or using public transportation. I choose the option of driving a car. 
Consequently, in order to satisfy the need to commute from A to B, I choose to 
perform the activity of driving a car for the motive (the need is transformed into a 
motive) to commute from my house to my work place. My goal is now to drive a 
car. To be able to drive a car, I have to perform a chain of actions: for the purpose 
to make the car to move, I have to start the engine of the car; for the purpose to 
get car on the road, I have to orient the car to move in a certain direction; for the 
purpose to make the car stop, I have to stop the engine of the car. Each of the 
actions that I already enumerated is accomplished through a set of operations, 
which are already well-established methods. The procedure for starting the 
engine of my car consists on pushing the START button while keeping the brake 
pedal down. To make the car move in the direction that I want, I have to 
position the automatic shift, accelerate by pushing the acceleration pedal down, 
and rotate the steering wheel. To stop the car, I have to push down the brake 
pedal until the car stops moving, bring the automatic shift in the P position, and 
press STOP button. The operations that I just enumerated are particular for the 
Nissan Altima 2008 car that I drive. For a different car, there may be different 
operations involved. Also, the actions that I mentioned above are triggered by 
the activity of driving a car. If I had chosen the activity of biking with the goal to 
ride a bike, I would have had different actions and different operations. 
Therefore, once chosen the activity that has the goal to satisfy the need, the 
actions are purposefully performed to achieve the goal of the activity.  
 
In conclusion, an activity, from Leontief‟s perspective, has to have the following 
identifiable components:  

 the need that motivates the activity;  
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 the goal of the activity and how it would satisfy the need;  

 the sub-goals that would lead to achieve the goal of the activity;  

 the actions that need to be performed and how their purposes would meet 
each sub-goal;  

 the operations involved in each action and how they apply and transform in 
the particular conditions of the activity.  

 
At this point, it is important to mention that since Leontief activity theory 
continued to develop and to expand its interpretations and implications. 
Engestrom (2001) talks about three generations of research that contribute to the 
evolution of the activity theory. The first generation is centered around 
Vygotsky‟s work on the triad of human development Subject–Object–Mediation. 
The second generation is established by Leontief‟s differentiation between 
individual action and collective activity. And, the third generation introduces 
the interconnectivity and interaction of at least two activity systems. All the 
contemporary research on activity theory (Jooganah &Williams, (2016); Gedera 
& Williams (2016); Solomon, Croft, Duah, and Lawson, 2014) is part of the third 
generation. The approach that I am taking, goes back to the second generation 
and I am considering the process of generalization in mathematics as being the 
individual activity system that has the characteristics enumerated in the 
previous paragraph.  
 
Mathematical Generalization as Activity System 
In mathematics, the need for solving a mathematical situation becomes the motive 
to identify an activity that has as goal to discover a solution accepted by the 
mathematical community. This activity is, in fact, a mental activity or a mental 
process. As a mental activity it is generated and determined by mental actions 
such as analysis, synthesis, and abstraction identified by Rubinshtein (1994) as 
critical components in a process of thinking.  Each of these actions has the 
purpose to contribute to the process of solving the mathematical situation. All 
these actions, in order to be performed, request a number of operations that need 
to be manipulated in the specific conditions imposed by the problem that has to 
be solved.  
 
The requirements of an activity system were enumerated in the previous section. 
In this section, I will show how the process of generalization satisfies all these 
requirements. First, I will discuss the goals of generalization and how they 
correspond to the need of solving a mathematical problem. The arguments that I 
will use here are based on Krutetskii‟s work on students‟ mathematical abilities, 
which provides evidence of how children do generalization in mathematics. 
Next, I will describe the key actions involved in the process of generalization, 
which are analysis, synthesis and abstracting. Then, I will describe the inter-
relationships that exist in a generalization activity by using Rubinshtein‟s  
“routes” through generalization. In other words, the next part of this section will 
deplete the schemata from Figure 3, which is a transformation of the activity 
schemata represented in Figure 2.   
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Figure 3: The schematic representation of the system that is characteristic to the 
process of generalization in mathematics seen as an activity. 

 

The Goals of the Generalization Activity 
To start, I want to highlight one more time that generalization is considered a 
process and not a result (Rubinshtein, 1994, Krutetskii, 1976). Rubinshtein (1994) 
proposed to study thinking as a process (a generalization process) that derives 
from mental activities such as analysis and synthesis instead of studying the 
assimilation of knowledge, which is a result of a thinking process. Krutetskii 
(1976) followed Rubinstein‟s approach and investigated what abilities are 
needed in order to learn mathematics. The meaning for abilities that Krutetskii 
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used in his research is that of “individual traits of mental activity on which the 
relative swiftness of mastery of skills and habits and their qualitative 
distinctions depend” (p. 14). Also, Krutetskii noticed that: “the aptitude for 
learning mathematics is manifested by a pupil‟s ability to generalize 
mathematical material” (p. 24).  
 
Generalization is a mental process that supports mathematical learning. 
Krutetskii (1976) differentiated between two levels of the ability to generalize 
mathematical materials: 
 
 (1) the ability of a child to identify something general that is already known to 
him in particular cases and apply the general to the particular, for example, to 
apply the distributive property of multiplication over addition to find the 
product 

  

6 ´18;  
(2) the ability of a child to find something general that is not known to him from 
isolated and particular cases, for example, to find the 100 term for the sequence: 
1,5,9,13,17…. Consequently, the goals for the activity of generalization are:  
(1) to apply a general concept to a particular situation; 
(2) to discover a general concept from particular cases.      
 
The actions of analysis, synthesis, and abstraction 
Rubinshtein (1994) considered that mental actions such as analysis, synthesis, and 
abstraction have to take place in order to perform a generalization activity. 
Davydov (1990) describes these actions in the following way: 
 

 Analysis is the method or logical technique by which the objects are 
represented by observed common attributes (p. 44). This action has the 
purpose to identify the characteristics that some given objects have in 
common. It is performed through operations that lead to know each 
object. The operations used delineate how an object is similar, or identical 
with other objects. These common properties are called the attributes of 
the object (Davydov, 1990, p. 38).  

 Synthesis is the method or logical technique that uses the attributes 
observed through analysis to create a new system (p. 44).  

 Abstraction is the mental delineation of certain properties of objects and 
the segregation of them from all other properties (p. 38).  
 

Krathwohl (2002) gives similar descriptions for analysis, synthesis in A revision of 
Bloom’s Taxonomy: An Overview. Dubinsky (1991) discusses the process of 
abstraction in Reflective Abstraction in Advanced Mathematical Thinking. For a more 
detailed presentation of the generalization activity, I will further describe the 
meanings that analysis and synthesis have in the Revised Bloom‟s taxonomy and 
how Dubinsky interpreted Piaget‟s three types of abstraction in the study of 
mathematical thinking. 
 
The process of analysis implies to break the “material into its constituent parts 
and detecting how the parts relate to one another and to an overall structure or 
purpose” (Krathwohl, 2002, p. 215). Its subcategories are differentiating, 
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organizing, and attributing. Assume, for example, that we have the following 
activity: Use the distributive property of multiplication over addition to find the 
product 

  

7´19. The process of analysis starts by differentiating the parts of the 
activity: “use the distributive property of multiplication over addition” and 
“find the product 

  

7´19.” First, I focus on the first part, which refers to the 

general property 

  

a´ b+ c( ) = a´b+ a´ c or 

  

b+ c( ) ´ a = b´ a+ c ´ a. Then, I 

consider the second part, which refers to the product of two whole numbers 7 
and 19. The number 7 is one digit. The number 19 is a two digit number. The 
general property involves two operations, multiplication and addition, e.g.,

  

a´ b+ c( ) and 

  

a´b+ a´c). The second part contains only a multiplication, 

197 .  For the purpose of finding the product 

  

7´19 using the distributive 
property of multiplication over addition, the expression has to contain an 
addition attached to the multiplication. I know that any of the numbers 7 or 19 
can be written like a sum, e.g., 

  

7 = 3+ 4 and 

  

19 =10+ 9. At this point, I finished 
analyzing the data provided. Next, I have to perform the process of synthesis. 
 
As another example, consider the following activity: “what is the 100th term in 
the sequence: 1,5,9,13,17…?” The parts of this activity are: “what is the 100th 
term” and the “sequence: 1,5,9,13,17….” I will focus on the second part, the 
sequence. Its first 5 terms are, 1, 5, 9, and 17, which are all odd numbers. 
However, they are not consecutive odd numbers. It is 1, skip 3, 5, skip 7, 9, skip 
11, 13, skip 15, 17. Also, I see that 5 is with 4 more than 1; 9 is with 4 more than 5; 
13 is with 4 more than 9; and 17 is with 4 more than 13. At this point, the process 
of analysis ends. The next action is the process of synthesis. 
 
Synthesis is the process that brings “elements together to form a novel, coherent 
whole or make an original product” (Krathwohl, 2002, p. 215). It has the 
subcategories generating, planning, and producing. In the first example given 

above, I may synthesize that: 

  

7 ´ 10 + 9( ) = 7 ´10 + 7 ´9 or 

  

3+ 4( ) ´19 = 3´19 + 4 ´19. Then, by performing the operations involved in the 

expression, I am able to find a solution for the problem. For the second example, 
the synthesis may be 1, _, 5, _, 9, _, 13, _, 17… or 1, 1+4=5, 5+4=9, 9+4=13, 
13+4=17…. In contrast with the previous example, at this stage of my thinking 
process I am not able to make a statement about the 100th term of the given 
sequence. I need to complete another mental action. 
 
The next action included in the schemata for the generalization activity is 
abstraction. For the description of this process, I am using Dubinsky‟s review of 
Piaget‟s work, on the process of abstraction in mathematics, scattered over many 
articles and books written by Piaget in his last 15 years of life.  
        
Piaget considered three stages of the process of abstraction (Dubinsky, 1991): 
empirical abstraction, pseudo-empirical abstraction, and reflective abstraction. First 
stage, the empirical abstraction, consists in deriving statements from the external 
properties of the given data. As Dubinsky explained, it means to extend the 
properties from being particular to “some” data (the given ones) to “all” possible 
data. For example, if I synthesize that the first terms of the sequence 1, 5, 9, 13, 17 
are the odd numbers 1, _, 5, _, 9, _, 13, _, 17, then I can make the generalization 
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that the sequence represents the odd whole numbers beginning with 1 and skips 
every other odd number. To find the 100th term of the sequence, I will continue 
enumerating the odd numbers until I get to the 100th term. If my synthesis for 
the first 5 terms of the sequence is 1, 1+4=5, 5+4=9, 9+4=13, 13+4=17, then I can 
make the statement that the sequence starts with 1 and then each term is the sum 
from the previous term and 4. To find the 100th term, I will continue to add 4 to 
the last term of the sequence that I know until I obtain the 100th term. In both 
examples, I performed an empirical abstraction because I extended an external 
property that exists among the 5 terms of the sequence to any of its terms. 
        
The second level of abstraction is the pseudo-empirical abstraction. It is 
intermediary between empirical abstraction and reflective abstraction.  The pseudo-
abstraction consists in deriving new properties by transforming the initial data. 
We obtain a new set of data after we apply some operations to the initial set of 
data. Let us, again, consider the case of the sequence 1, 5, 9, 13, 17…. Suppose 
that my empirical abstraction was that the sequence is the whole odd numbers 
starting with 1 and skipping every other odd number.  I know that each whole 
odd number can be written in the form 

  

2k +1, where k is a whole number. 
Therefore, I transform my initial data by rewriting each term using the previous 
representation. My new set of data is: 

  

2´0+1=1, 

  

2´2+1= 5, 

  

2´ 4 +1= 9, 

  

2´6+1=13, 

  

2´8+1=17, … I make the statement that the initial sequence is 
the same as the sequence, 

  

2´0+1, 

  

2´2+1, 

  

2´ 4 +1, 

  

2´6+1, 

  

2´8+1, …  At 
this time, I performed a pseudo-empirical abstraction. If I do not know how to 
represent an odd number, then I will transform the initial sequence by adding 
the missing odd numbers, and I consider the sequence 1, 3, 5, 7, 9, 11, 13, 15, 17, 
… I analyze this new sequence, and I see that 3 is with 2 more than 1, 5 is with 2 
more than 3, etc. My synthesis is that the first nine terms of the sequence are 1, 
1+2=3, 3+2=5, etc. I take out the numbers that I added to the initial sequence, 
and I obtain the following: 1, 3+2=5, 7+2=9, 11+2=13, 15+2=17, … I declare now 
that my initial sequence is the same as 1, 3+2, 7+2, 11+2, 15+2, … Therefore, I 
performed a pseudo-abstraction.  
        
The third level of abstraction is reflective abstraction. In this process, in order to 
delineate general properties, the focus is on a single case and the actions became 
coordinated by using high mental functions that are involved in logico-
mathematical operations (e.g., using known mathematical laws, properties, 
concepts). For example, from pseudo-empirical abstraction, I have the sequence: 

  

2´0+1, 

  

2´2+1, 

  

2´ 4 +1, 

  

2´6+1, 

  

2´8+1, …. My intention is to find how I 
can determine the term when I know its position in the sequence. I do a new 
analysis, synthesis, and empirical abstraction and I declare that the terms of the 
sequence are of the form 2 multiplied by an even number plus 1. I focus on the 
first term: 

  

2´0+1. Since, 2 and 1 are fixed in the form of a term, I coordinate my 
actions in order to connect 0 with the position 1. I consider the actions: 0 is an 

even number, 

  

0 = 2 ´0 = 2 ´ 1-1( ) and I connect the first 1 with the position of 

the term. Therefore, if the position of a term is n, then it equals 

  

2 ´2 ´ n -1( ) +1= 4 ´ (n -1) +1= 4n - 4 +1= 4n - 3. 

This is a general property of the initial data that was discovered through the 
process of reflective abstraction, as Dubinsky described it. 
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The three stages of the process of abstraction interrelated. The pseudo-empirical 
and reflective abstractions are using the results of the empirical abstraction. 
Before performing a reflective abstraction the processes of empirical and 
pseudo-empirical abstractions may be carried out more than once. Moreover, if 
we consider all the actions involved in the process of generalization (analysis, 
synthesis, and abstraction), there is no strict order in which they are performed. 
However, we may direct ourselves through a generalization activity by using as 
reference the three routes through generalization described by Rubinshtein, 
which I will describe next.  
 
Rubinshtein’s Three Routes Through Generalization 
As cited by Davydov (1990), Rubinshtein noticed three routes toward 
generalization, which describe the actions taken in order to complete the activity 
of generalization. The first route is called  “empirical generalization”. In this 
case, the goal of finding a general statement is attained through actions that have 
the purpose to determine what some given objects have in common. This action 
is performed through operations that lead to identify each object. These 
operations are usually comparisons that describe how an object is similar, or 
identical with other objects. 
      
Rubinshtein described the first route is the “empirical generalization” in the 
following way: 
 

“…[The elementary empirical generalization] is accomplished as 
a result of comparison by singling out the general (similar) 
properties in which the phenomena being compared coincide. … 
This sort of generalization is merely a selection from a number of 
properties that are given empirically, directly, and sincerely; it is 
thus not capable of leading to the discovery of anything above 
what is given directly, by the senses.” (Citation taken from 
Davydov, 1990, p. 192) 

      
For empirical generalization, the primary mental operation is comparison, which 
is the method or logical technique by which the common attributes of particular 
objects are determined (Davydov, 1990, p. 38). The operations applied during the 
comparison action use only what are immediately given and the information 
received through senses. No transformation is performed on row data. The 
following example presents an empirical generalization. 
      
Suppose that I need to find the class of the numbers 2, 4, 6, 8. First I compare 2 
with 4. I notice: that 2 and 4 are whole numbers; that they are even; that 4 is the 
double of 2; that 2 is half of 4; that 2 is the square root of 4; and that 4 is the 
square of 2. Then, I compare 2 with 6, 2 with 8, 4 with 6, 4 with 8, and 6 with 8. I 
look at all the results of my comparison, and I see that all of them are whole 
numbers and even (the common attributes). Therefore, I did an analysis. By 
synthesizing, I conclude that the numbers are even whole numbers. Now, I can 
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abstract by declaring that there is an even whole numbers class that contains the 
given numbers. The process of generalization was successfully performed. 
     
Unfortunately, by performing an empirical generalization we cannot guaranty 
the success in all situations, as I will illustrate with the next example. Suppose 
that I need to find the next term in the sequence 1, 5, 9, 13, 17…. First I compare 1 
with 5. I notice that 1 and 5 are whole numbers, that they are odd. Then, I 
compare 1 with 9, 1 with 13, 1 with 17, 5 with 9, 5 with 13, 5 with 17, 9 with 13, 9 
with 17, and 13 with 17. I look at all the results of my comparison, and I notice 
that all of them are whole numbers, and they are odd (the common attributes). 
Therefore, I did an analysis. By synthesizing, I conclude that the numbers are 
odd whole numbers. Now, I can that there is an odd whole numbers class that 
contains the given numbers, which is true but the process of generalization is not 
finished. If I say that the general term is 2n+1, the general representation of an 
odd number, I do not give the correct answer since 

  

2 ×1+1= 3 is not a member 
of the sequence. Therefore, I did not perform a successful generalization. At this 
point, we need to look for a different approach to solve the problem.  
      
The second route to generalization described by Rubinshtein  (as presented by 
Davydov, 1990) is to focus the mental activity on analysis and abstraction.  The 
purpose of the analysis is to distinguish what is essential from what is not 
essential. The essential of an object is a characteristic that remains unchanged in 
the object when it is transformed during its interactions with other objects. When 
the essential is delineated, it becomes right away abstracted. Then the abstract 
can be synthesized into a concrete conclusion, by a mental restoration and 
interpretation of the observed phenomena. This generalization is called scientific 
or theoretical generalization and it is described as: 
 

 “Not merely a selection but a transformation as well… The transformation 
of what is immediately given, which leads to an abstract concept of a 
phenomenon, consists in breaking the contact … of the attendant 
circumstances, which complicate or mask the essence of phenomena.” 
(Rubinshtein, cited by Davydov, 1990, p. 193) 

      
I will use the second route to generalization to the previous example where the 
problem was to find the next term in the sequence 1, 5, 9, 13, 17…. I start looking 
at each number, and I observe that each of them is odd. My next step is to 
analyze what remains unchanged in a number when it interacts with the 
numbers that are close to it. I pick up an object, for example, 5 (I would not pick 
1 because it has fewer interactions with other objects). I see that 5-1=4 and that 9-
5=4 (I transformed the give data). Analyzing the results of this transformation, I 
see that the distance between 5 and its neighbors is the same, 4. I make the 
abstraction that each term of the sequence is with 4 greater than its left neighbor 
and with 4 less than its right neighbor. I synthesize that 9 is with 4 less than 13, 
and that 13 is with 4 less than 17. I do another analysis, and I see that the relation 
between a term and its predecessor is always the same, 4. Now, I make the 
abstraction that every term is its predecessor plus 4.  Finally, I say that the next 
term in the sequence is 17+4=21. Therefore, by following the second route to 
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generalization described by Rubinstein I was able to generalize the relationship 
between the numbers and I applied this general relation to solve the problem. 
The question is, now, what should I do if the problem would seek to find the 
general term of the sequence 1, 5, 9, 13, 17…? 
      
Rubinshtein mentioned a third route through generalization that can be taken. 
This route requires a theoretical derivation that is “accomplished by a two-way 
movement from general to the particular and from the particular to the general – 
generalization and theoretical cognition are interrelated” (Davydov, 1990, p. 
194).  
      
In the case of the problem that requests the general term for the sequence 1, 5, 9, 
13, 17…, I will start from the general statement that I made before: each term is 
its predecessor+4. I will use symbols to present this statement in the following 

way: 

  

an+1 = an + 4. I will apply this general formula to the first particular cases: 

a2 = a1 + 4 =1+ 4,a3 = a2 + 4 =1+ 4+ 4and so on. 

      
By analyzing the transformations that I performed, I notice that for each term 
has 1 as a constant component and that 4 is a repeated addend. I do the 

abstraction that 

  

an =1+ (n -1) × 4. I am checking now if the formula is working 

for the first terms of the sequence. The proposition 

  

5 =1+ (2-1) × 4 is true. Also, 
the proposition 

  

9 =1+ (3-1) × 4 is true. For this special case in which the 
problem involves a number sequence, to prove that the abstract formula 

represents the general term, I will show that if 

  

ak =1+ (k -1) × 4 is true, then 

  

ak+1 =1+ k × 4 is true. That is: 

  

ak+1 = ak + 4 =1+ (k -1) × 4 + 4 =1+ k × 4 - 4 + 4 =1+ k × 4 

Therefore, 

  

ak+1 =1+ k × 4 is true. 

      
In the later computations, I used the letter k instead of n because I wanted to 
emphasize that those computations are general but preformed for the particular 

situation where the formula for

   

ak+1
 can be derived from the formula of 

   

ak. This 

is an instance in which we see the two-way move from general to particular and 
from particular to general.  Now, I decide that the general term for the given 

sequence is 

  

an =1+ (n -1) × 4. The technique that I used to determine the general 

formula is known in mathematics as mathematical induction. This method is a 
relevant example for the third route to generalization described by Rubinstein. 
 

Three Categories of Mathematical Generalization Activities 
Similar to Rubinshtein‟s description of the three types of thinking processes that 
may develop during a generalization activity, in mathematical activities we may 
consider three routes that lead toward generalization: the empirical 
generalization, the pseudo-empirical generalization, and the reflective 
generalization. The key element, which differentiates the generalization 
activities, is the purpose of the action of abstraction. Therefore, the categories of 
mathematical generalization activities follow the three “routes” through 
generalization described by Rubinshtein empowered by the categories of 
abstraction resumed by Dubinsky from Piaget‟s work. 
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An empirical generalization activity involves the actions of analysis, synthesis, and 
empirical abstraction. The purpose of the action of analysis is to separate the 
problem situation into distinct parts. Then, by comparing the parts among them, 
we determine the common properties of these components. Suppose that we 
need to find the area of a triangle that has the length of the base 7 cm and a 
height of 4 cm.  By analyzing this statement, we can separate the following parts: 
a triangle with a base of 7 cm long and a height of 4 cm long; and the concept of 
area of a triangle. Both parts have in common the geometrical shape of a 
triangle. We may synthesize this information. This means that we may describe 
the situation by using the observations made during the action of analysis. 
Therefore, we have a triangle (base=7cm, height=4cm) that has an area. The area 
of a triangle can be computed by using the general formula 

   

Areatriangle =
base´ height

2
. Now, we can find the area of the given triangle: 

   

Area =
7cm ´ 4cm

2
=14cm2. The final result was the outcome of an empirical 

abstraction.  We used only external properties of the specified triangle and the 
general formula for the area of a triangle.  
        
The second category of mathematical generalization activities involves the 
pseudo-empirical generalization. The actions used in this process are analysis, 
synthesis, and pseudo-abstraction. Suppose that we need to determine the area 
of a right triangle that has the legs of lengths 7cm respective 4cm. The analysis 
and synthesis actions are similar to the previous example, but we cannot go 
further with an empirical abstraction because the external properties of the parts 
of the problem do not match. The given triangle is a right triangle with its legs of 
7cm and 4cm. The second part is a general formula for the area of a triangle that 
uses the lengths of the base and height. We have to return to the information 
that we have from the action of analysis. We have a right triangle, and we need 
to find the lengths of its base and height in order to compute its area. We know 
that in a triangle we can choose as a base any of its side. Therefore, if in the right 
triangle we choose the leg of side 4cm as the base, then the leg of side 7cm 
becomes the height of the triangle. With this transformation of the initial 
information, we are able to compute the area that we need to find. We obtained 
the solution through a pseudo-empirical abstraction. 
       
The third category of mathematical activities is the reflective generalization. In a 
reflective generalization, the actions involved are analysis, synthesis and 
reflective abstraction. Assume that we need to find the area of an equilateral 
triangle with the side of length 7cm. The information that we have from analysis 
and synthesis is that we have an equilateral triangle of side 7cm and we have to 
know the lengths of its base and height. Through pseudo-empirical abstraction, 
we transform the initial data by considering the length of the base of the triangle 
equal with 7cm.  In the information, that we have, there are no data about the 
height of the triangle. We have to do a reflective abstraction in order to find the 
length of the triangle‟s height. 
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Therefore, we start construct an equilateral triangle in which I draw its height. 
We know that the height of the equilateral triangle divides the base in half (if we 
do not know this property, we have to do another reflective generalization 
activity). We separate from the first equilateral triangle a half that forms a right 
triangle with one of the legs being the height of the initial triangle, the second 

leg is a half of the base of the initial triangle (its length is 

   

7

2
cm), and the 

hypotenuse is a side of the first triangle (its length is 7cm). In the new triangle, 
we use a consequence of the Pythagorean Theorem. Therefore, we have that 

   

Leg = 7cm( )
2

-
7

2
cm

æ 

è 
ç 

ö 

ø 
÷ 

2

=
7 3

2
cm. Now, we reverse the reasoning process. We 

have the length of the leg of the right triangle, which was separated from the 
initial equilateral triangle. We reconstruct the equilateral triangle using the new 
information that we have. Now, we have a triangle with a base of length 7cm 

and a height of 

   

7 3

2
cm. The area of the equilateral triangle of side 7cm is 

   

Area =
7cm ´

7 3

2
cm

2
=

49 3

4
cm2. 

        
The examples, which I used to illustrate the three categories of mathematical 
generalization activities, are all focused to identify something general that is 
already known (the general formula for the area of a triangle) and apply it in 
particular cases.  For situations when we need to find something general that is 
not known from isolated and particular cases, the examples used to illustrate 
Rubinshtein‟s three routes through generalizations are reasonable 
representations for the three categories of mathematical generalization activities. 
 

Conclusion 
To conclude, the generalization process in mathematics can be regarded as an 
activity system. By explaining the means of the generalization activity using 
Leontief‟s activity theory and Rubinshtein‟s descriptions of the generalization 
process, we are able to follow the thinking trends that are behind a mathematical 
generalization. The understanding of the process of generalization in 
mathematics as an activity system is only the first step in developing a 
perspective of teaching mathematics through generalization. This paper is aimed 
to provide a space for reflection on what it means to perform a generalization in 
mathematics and a starting point for a new work approach in several areas of 
research: student learning, teacher education, curriculum development. 
 
In the realm of student learning, the theory may be used to get more insight in 
students‟ development of mathematics reasoning and to identify the correlation 
between the biological development and the process of generalization in 
mathematics. For the area of teacher preparation and teacher practices research, 
the theory may be used to identify the support needed for implementing high 
leverage teaching practices (TeachingWorks, 2017) into school curriculum. Some 
research questions that arise are: What questions do teachers ask in order to 
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provoke student‟s sharing about their analysis, synthesis, and their abstraction 
level? What patterns of abstraction, synthesis, and abstraction do students use 
while they work on a mathematical task? How do teachers lead a classroom 
discussion in order to elevate students‟ abstract thinking? In the area of 
curriculum development, we have to develop and research designing curricula 
and classroom activities that would follow the principles of generalization.  
        
There are a couple of limitations for the way in which I interpret the activity of 
generalization. First, Leont‟ev strongly highlighted the “essential” connection 
between the motive for an activity and the activity itself, which will not be too 
much emphasized in my description. This aspect of an activity involves a 
separate analysis from the position of motivational theory. My focus is on what 
is happening after the motivational level. The second limitation, which is the 
most critical, is that the definition is purely theoretical. However, it is a valuable 
tool to analyze classroom activities. 
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