
1 
 

© 2017 The authors and IJLTER.ORG. All rights reserved. 

International Journal of Learning, Teaching and Educational Research 
Vol. 16, No. 1, pp. 1-21, January 2017 

 
 

Item Consistency Index: An Item-Fit Index for 
Cognitive Diagnostic Assessment 

 

 

Hollis Lai,1 Mark J. Gierl,2  Ying Cui,2  Oksana Babenko3 

 
1 School of Dentistry, Faculty of Medicine & Dentistry  

2Centre for Research in Applied Measurement and Evaluation 
3Department of Family Medicine, Faculty of Medicine & Dentistry  

University of Alberta, Canada 

 
Abstract. An item-fit index is a measure of how accurately a set of 
item responses can be predicted using the test design model. In a 
diagnostic assessment where items are used to evaluate student 
mastery on a set of cognitive skills, this index helps determine the 
alignment between the item responses and skills that each item is 
designed to measure. In this study, we introduce the Item 
Consistency Index (ICI), a modification of an existing person-
model fit index, for diagnostic assessments. The ICI can be used to 
evaluate item-model fit on assessments designed with a Q-matrix.  
Results from both a simulation and real data study are presented. 
In the simulation study, the ICI identified poor-fitting items under 
three manipulated conditions: sample size, test length, and 
proportion of poor-fitting items. In the real-data study, the ICI 
detected three poor-fitting items for an operational diagnostic 
assessment in Grade 3 mathematics. Practical implications and 
future research directions for the ICI are also discussed.  
Keywords: Item Consistency Index; cognitive diagnostic assessment; test 
development 

 
Introduction 
In educational testing, items are developed to elicit a correct response 
when examinees demonstrate adequate knowledge or understanding on 
the required tasks and skills within a specified domain. The methods of 
specifying knowledge, the conceptualization of content domains, and the 
design of how an item elicits responses are currently undergoing 
significant change with the evolution of our test designs. But one outcome 
that remains the same is that an item must assess the tasks and skills as 
intended, and the quality of each item must be judged to be high if it is to 
be included on the test. In most test designs, item discrimination power is 
a statistical criterion that is synonymous with describing item quality. 
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Item discrimination helps describe how well an item can differentiate 
examinees at different performance levels. Depending on the test design 
and how the scale of examinee performance is realized, different 
measures of item discrimination may be used. Additional information 
about item discrimination can also be garnered from measures of item-
model fit.  An item-model fit index describes the overall difference 
between real responses on a given item with a corresponding set of 
expected responses predicted by the test design.  Item-model fit indices 
can be summarized, in general, as a ratio between the expected and actual 
correct responses on each item to compare the proportion of correct 
responses across examinees of different abilities with an expected correct 
proportion from the test design model. Different criterions that represent 
the examinee overall performance such as total score, estimated ability, or 
pseudo-scores have been used to group the responses of examinees' with 
similar ability to produce variations of item-model fit (Bock, 1972; Yen, 
1981; Rost & von Davier, 1994; Orlando & Thissen, 2003). Application of 
item-model fit indices include the identification of poor performing items, 
cheating, or test administration anomalies, along with addressing issues 
related to dimensionality, item construction, calibration, and model 
selection (Reise, 1990).  

  
Cognitive Diagnostic Assessment and Model Fit 
Demand for more assessment feedback to better guide instruction and 
learning has led to the development of more complex test designs.  
Cognitive diagnostic assessment (CDA) is an example of a test design that 
yields enhanced assessment feedback by providing test takers with 
specific information about their problem-solving mastery on a given 
domain (Gierl, Leighton, & Hunka, 2007). The cornerstone of a CDA is the 
use of a cognitive model to guide test development.  The use of a 
cognitive model allows CDA to provide enhanced feedback because 
cognitive information can be extracted from the examinees’ item 
responses which, in turn, provide more detailed and instructionally 
relevant results to test takers.  Compared to traditional tests where an 
item response is linked to a single outcome scale, the cognitive inferences 
made in CDA allow each item to measure multiple skills related to 
student learning. Due to the complexity of interpreting and modeling 
different aspects of cognitive skills, many approaches to modeling and 
scoring examinee responses are available. Sinharay, Puhan, and 
Haberman (2009) summarized three common features among different 
methods of CDA: 
(1) tests assess student mastery based on a cognitive model of skills; (2) 
items probe student mastery on a pattern of skills expressed in a Q-
matrix; and (3) items probing the same pattern of skill mastery should 
elicit a similar pattern of student responses. 
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An essential part of CDA development relies on the definition of a Q-
matrix. The Q-matrix is an item-by-attribute matrix used to describe the 
skills probed by each item.  For example, if a CDA is designed to 
determine examinee mastery on four skills, and an item was designed to 
elicit a correct response if the examinee has mastered the first and the 
fourth skill, then the row corresponded to that item in the Q-matrix 
would be expressed as {1,0,0,1}. The Q-matrix and the student response 
patterns are used to calibrate the model parameters and provide students 
with diagnostic results related to their cognitive problem-solving 
strengths and weaknesses.   
 
To ensure that CDA results provide the most accurate information to 
examinees about their cognitive skills, the quality of CDA items must be 
scrutinized. The evaluations of the claim that items are to probe a 
specified set of skills have varied by the scope of how item-skill relations 
are represented. Model-data fit has traditionally been used to evaluate 
how items are aligned with construct of the skills based upon item 
responses. Few studies have investigated the relations of item-skill 
alignment. Wang, Shu, Shagn, and Xu (2015) have developed a measure 
which allows the evaluation of skill-to-item fit based on the DINA model 
that assumes a probabilistically scaled skill representation. To evaluate 
item-model fit in CDA, items need to be evaluated beyond the 
relationship of the correct responses on a particular item and single 
outcome scores.  Because each item is designed to provide student 
mastery information on multiple skills, an item-model fit index is needed 
to ensure item responses are aligned with the intended cognitive skills.  

 
Evaluating Model-Fit for CDA  
The rationale evaluating model fit in CDA can be considered in two 
approaches, evaluating the fit with the expected psychometric properties 
of the test items or evaluating the fit of responses with the blueprint of 
skills. Existing developments tend to focus on the former approach. For 
example, Jang (2005) compared total raw score distributions between 
observed and predicted responses using the mean absolute difference 
(MAD). Jang’s approach to evaluating model-fit is akin to IRT model fit 
approaches, where the level of fit is determined by total score differences 
between the expected and examinee results.  But with each correct 
response of a CDA item linked to mastery on a vector of skills, evaluating 
item-model fit for CDA need to consider the fit of an item with the pre-
requisite skills rather than a single test-level outcome.   
 
Sinharay and Almond (2007) also developed an approach for evaluating 
item fit for CDA by assuming that examinees categorized with the same 
skill pattern should also have the same diagnostic outcome.  With their 
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approach, the proportion correct response for examinees with the same 
skill pattern is compared with the expected proportion predicted by the 
cognitive model.  Differences between the expected and observed correct 
proportions are then summed across all skill patterns and weighted 
proportionally by sample size.  That is, model-fit for item j was defined 
as: 

 

𝑋𝑗
2 =  

𝑁𝑘(𝑂𝑘𝑗 −𝐸𝑘𝑗 )2

𝐸𝑘𝑗 (𝑁𝑘−𝐸𝑘𝑗 )

.
𝑘 , 

 
where 𝑁𝑘  is the number of examinees with skill pattern k, 𝑂𝑘𝑗  is the 

number of examinees with skill pattern k that responded correctly to item 
j, and 𝐸𝑘𝑗  is the product of the expected proportion of correct response for 

pattern k multiplied by 𝑁𝑘 . Although this approach can be applied to 
account for fit among multiple sets of skills, results rely on an expected 
correct response rate of a given item for each skill pattern. As the 
expected correct response for a given set of skill pattern is not readily 
available, application of this method for determining model fit may be 
problematic. Moreover, a poor sample representation of a skill pattern or 
psychometrically indistinguishable skill patterns will also misestimate 
item-model fit. One way to avoid the influence of misclassification on an 
item-model fit measure for CDA is to comparatively evaluate items that 
measure the same skills.  That is, items measuring the same skills are 
expected to elicit similar response patterns with one other.   
Hierarchy Consistency Index (HCI)  
One statistic developed specifically for CDA to evaluate person-model fit 
is the Hierarchy Consistency Index (HCI; Cui & Leighton, 2009; Cui & Li, 
2014; Cui & Mousavi, 2015). The HCI is a statistic for evaluating the fit of 
the observed responses from an examinee with the expected responses 
from a CDA model based on a comparison between the observed and 
expected response vectors.  The main assumption for the HCI is that if an 
examinee gives a correct response to an item requiring a set of skills, then 
the examinee is assumed to have mastered that set of skills and therefore 
should also respond correctly to items that designed to measure those 
skills.  For example, if an examinee gives a correct response to an item 
that requires the first and third skill in a CDA that assess four skills (or an 
item with a skill pattern of [1,0,1,0] in the Q matrix), then the examinee is 
also expected to respond correctly to items that probe the same set of 
skills [1,0,1,0], or a subordinate or prerequisite of those skills (e.g., [1,0,0,0] 
, [0,0,1,0]), which require skills should have been acquired.  In this 
manner, the number of misfitting responses across all items with their 
corresponding subsets of skills is calculated for each examinee to 
determine an index of person-fit.   
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Given I examinees were administered with J items, the HCI for examinee i 
is calculated as:  

𝐻𝐶𝐼𝑖 = 1 −
2   𝑋𝑖𝑗 (1−𝑋𝑖𝑔 ).

𝑔𝜖 𝑠𝑗
𝐽
𝑗=1

𝑁
 ,           (1) 

 
where Xj is the examinee’s scored response for item j, sj is an index set 
that includes items requiring the subset of attributes measured by item j, 
and Xg is the examinee’s scored response for item g.  For example, if item j 
is answered correctly, then all items that measure the attributes or a 
subset of attributes probed by item j is represented by index set sj , where 
g is an item index within sj.  N is the number of comparisons made across 
all sj.  The HCI has a maximum of 1 and minimum of -1, where a high 
positive HCI value represents good person-fit with the expected response 
model.   
 
The HCI is a useful index for analyzing person-fit across different types of 
CDAs, as it requires only the use of the Q-matrix and examinee responses.  
In this study, we modify the HCI to create an index for analyzing item-
model fit.  Thus, the purpose of this study is twofold.  First, we introduce 
and define an item-model fit index called the item consistency index (ICI). 
The ICI is used to evaluate the fit of an item related to the underlying 
cognitive model used to make diagnostic inferences with that item.  
Second, we present results from two studies to demonstrate both the 
simulated and practical performance of the ICI across of host of testing 
conditions typically found in diagnostic assessments.  

 
Item Consistency Index (ICI) 
As elaborated earlier, the HCI measures the proportion of misfitting 
observed examinee responses relative to the expected examinee responses 
on a diagnostic assessment.  This principle can also be extended to 
evaluate item-fit.  With the HCI, the misfitting responses related to each 
item is summed across all items for each examinee.  As described in (1), 
misfit for examinee i (mi) can be written as: 

  

𝑚𝑖 =   𝑋𝑖𝑗 (1 − 𝑋𝑖𝑔).
𝑔𝜖𝑠𝑗

𝐽
𝑗  .                     (2) 

 
Alternatively, to evaluate the misfit for item j, the number of misfitting 
responses from the subset of item j can be summed across all examinees.  
This modification can be written as: 
 

𝑚𝑗 =   𝑋𝑖𝑗  1 − 𝑋𝑖𝑔 .
 𝑔∈𝑆𝑗

.
𝑖  ,                   (3) 

 
where 𝑋𝑖   is student 𝑖’s score (1 or 0) to item 𝑗, and 𝑋𝑖𝑔  is student 𝑖’s score 

(1 or 0) to item 𝑔.  Item g belongs to 𝑆𝑗 , a subset of items that require the 
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subset of skills measured by item j.  In this manner, for a correct response 
to item j for examinee i (𝑋𝑖𝑗

= 1), one can consider any incorrect responses 

in 𝑆𝑗  to be a misfit for examinee i.  The number of misfits is then summed 

across all examinees.   
  
It should be noted that the HCI only considers students’ correct responses 
for analyzing misfit of a given item (𝑋𝑗 = 1). That is, misfit is calculated 

against the required skills only when students have provided the correct 
response. While this was adequate for analyzing misfit for person-fit, 
analyzing item-fit against a cognitive model also requires comparisons to 
be made when students respond to an item incorrectly (𝑋𝑗 = 0). As such, 

an evaluation of item-fit needs to account for this alternative comparison. 
For example, suppose an incorrect response was given on our exemplar 
item that required the skill pattern of [1,0,1,0].  From this item response, 
we could infer that the examinee does not possess all the necessary skills 
required to solve this item and, therefore, should respond incorrectly to 
all items that require the same skill pattern of [1,0,1,0].  Furthermore, the 
examinee should also respond incorrectly to items that require more skills 
than the current item (i.e., [1,1,1,0], [1,0,1,1], [1,1,1,1]).  These items that 
require the same skill or a more complex skill pattern can be 
conceptualized as an alternative subset of item j (𝑆𝑗

∗), and a correct 

response in any of the items belonging to 𝑆𝑗
∗ can be conceptualized as a 

misfit. This outcome can be expressed as:   
 

𝑚𝑗
∗ =   𝑋𝑖ℎ (1 − 𝑋𝑖𝑗

)ℎ∈𝑆𝑗
∗

.
𝑖 .                     (4) 

 
The set of alternative comparisons combined with comparisons from 
correct responses form the numerator of the ICI.  To maintain the same 
scale of comparison with HCI, the numerator is then divided by the total 
number of comparisons, which effectively transforms the outcome to a 
proportion of misfit responses for item j. The proportion is then rescaled 
to a maximum of 1 and a minimum of -1.  The ICI for item 𝑗 is then given 
as: 

 

𝐼𝐶𝐼𝑗 = 1 −
2    𝑋𝑖𝑗

(1−𝑋𝑖𝑔 )𝑔∈𝑆𝑗
+ 𝑋𝑖ℎ

(1−𝑋𝑖𝑗
)ℎ∈𝑆𝑗

∗  𝑖

𝑁𝑐𝑗

, (5) 

 
where 𝑋𝑖𝑗

 is student 𝑖’s score (1 or 0) to item 𝑗, 𝑆𝑗  is an index set that 

includes items requiring the subset of attributes measured by item 𝑗, 𝑋𝑖𝑔  is 

student 𝑖’s score (1 or 0) to item 𝑔 where item 𝑔 belongs to 𝑆𝑗 ,  𝑆𝑗
∗ is an 

index set that includes items requiring all, but not limited to, the 
attributes measured by item 𝑗, 𝑋𝑖ℎ  is student 𝑖’s score (1 or 0) to item ℎ 

where item ℎ belongs to 𝑆𝑗
∗, and 𝑁𝑐𝑗

 is the total number of comparisons for 
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item 𝑗 across all students.   
 
To illustrate the calculation of the ICI, consider a hypothetical 
administration of a CDA with 15 items and a Q-matrix presented in (6). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (6) 

  
Suppose this CDA of four skills was administered to an examinee who 
produced the item response vector (0,0,0,0,0,1,1,0,0,0,0,0,0,0,0). That is, the 
examinee responded correctly to items 6 and 7 only. To calculate the ICI 
for item 6, we first consider that the examinee has responded to the item 
correctly, therefore comparisons should be made with items that require 
skills that are prerequisites to or same with the original item.  In this case, 
items 2 and 4 belong in 𝑆6.  Since both item responses were incorrect, two 
comparisons were made (𝑁𝑐6

= 2) and two unexpected responses were 

found (𝑚6 = 2) for this examinee.  In addition, suppose we wanted to 
calculate the ICI of item 2 for this examinee. The alternative subset (𝑆𝑗

∗) 

will be needed since the examinee responded to the item incorrectly.  For 
this instance, seven items form the alternative subset for item 2 (𝑆2

∗ =

{3,6,7,10,11,14,15}).  Since the examinee responded correctly to item 6 and 
7, there were two unexpected responses (𝑚2 = 2) from a total of seven 
comparisons (𝑁𝑐2

= 7). In this manner, the number of unexpected 

responses and comparisons are summed across all examinees and 
rescaled to form the ICI. 
  
To demonstrate the performance of this item-model fit index across a 
variety of different testing situations, a simulation study was conducted 
to determine the performance of ICI for detecting poor-fitting items.  
Then, a real data study was conducted to demonstrate how the ICI can be 
applied in operational testing situations a CDA in Mathematics.   
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Methods and Results 
 
Study 1: Simulation Study 
To evaluate how well the ICI can identify items that fit poorly relative to 
their underlying cognitive model, a Monte-Carlo study was conducted by 
simulating responses from a diagnostic test designed to measure seven 
skills. To determine the performance of the ICI using simulated CDA 
data, examinee responses were generated under the Bernoulli 
distribution.  In addition to generating examinee responses, different 
testing conditions were manipulated to probe conditions that may occur 
in a real CDA administration.  Finally, to classify poor-fitting items using 
ICI, a common evaluation criterion was used to determine which items 
were fit poorly with the given cognitive model.   
  
The simulation process is similar to the actual steps used in developing 
CDAs (Gierl, Leighton, & Hunka, 2007), where cognitive model, items, 
and responses were developed in a sequential manner.  First, an existing 
cognitive model from Cui and Leighton (2009) was used to guide the 
simulation process.  The cognitive model consists of seven skills, with 15 
patterns of skill mastery identified as permissible.  The patterns of 
required skills for each item are expressed in the Q-matrix presented in 
Table A1 in the Appendix. To generate examinee responses, examinees 
were first assigned to an expected pattern of skill mastery from one of the 
15 skill patterns.  In addition to the 15 skill patterns, a null pattern 
[0,0,0,0,0,0,0] was also used to represent examinees who did not master 
any skills.  In total, sixteen expected skill patterns are distributed equally 
among the sample examinees.  To simulate response for an examinee on a 
given item, the examinee’s assigned skill pattern is compared with the 
skills required by that item as indicated by the Q matrix. A probability of 
correct response is assigned based on whether the examinee has all the 
prerequisite skills of the item.  Based on this assigned probability, the 
examinee’s response to each item was generated using a Bernoulli 
function.   
 
To simulate the effectiveness of ICI under different testing conditions, 
three factors were manipulated.  First, the number of items representing 
each skill pattern in the CDA was varied by three levels.  If a CDA is 
lengthened by including multiple items probing the same set of skills, 
then the reliability of each corresponding skill measured is expected to 
increase (Gierl, Cui, & Zhou, 2009).  In our study, the number of items in 
the CDA varied by one, two, or three items representing each possible 
skill pattern.  These three levels of variation on a total of 15 skill patterns 
resulted in test lengths of 15, 30, and 45 items, respectively.   
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Second, unlike the related person-fit HCI which is independent of sample 
size, the ICI is based on the proportion of misfit responses from all 
examinees.  Therefore, different sample sizes may affect the outcome of 
the ICI.  Three levels of sample sizes were manipulated: 800, 1600, and 
2400.  Since the 15 skill patterns and a null pattern are distributed equally 
among the examinees, the numbers of examinees representing each skill 
pattern are 50, 100, and 150, respectively.   
 
Third, an important feature for an item-model fit index is to detect items 
that fit poorly with the expected response determined by cognitive model.  
This concept is contaminated when the ICI is influenced by misfitting 
items related to the skills of the original item. To investigate whether the 
proportion of poor-fitting items have an effect on the ICI, the proportion 
of poor-fitting items were manipulated at three levels proportional to the 
test length: 5%, 10% and 25%.  In Cui and Leighton (2009), a well-fitting 
item was deemed to have a 10% chance for slips, where an examinee 
without mastery of the necessary skills will have a 10% chance of 
responding correctly while an examinee who has mastered the necessary 
skills will have a 90% chance of responding correctly.  While there can be 
many reasons for an item to fit poorly with the underlying cognitive 
model (e.g., model misspecification, item quality, option availability), 
generally a poor-fitting item yields a response that is aberrant from the 
cognitive model. To simulate a poor-fitting item, items responses were 
generated close to random. Table 1 contains the probabilities of correct 
response given the level of item fit (good or poor fit) and whether the 
examinee possesses the required set of skills. Taken together, three 
manipulated factors with three levels each yielded a total of 27 conditions 
as shown in Table A2 of the Appendix.   

Table 1. Correct response probability given the level of item fit and whether 
the examinee possesses the required set of skills 

 

  Item Fit 

Required skills Good Poor 

Present 0.9 0.6 
Not present 0.1 0.4 

 
To evaluate the effectiveness of the ICI for detecting poor-fitting items, a 
criterion is needed for the ICI to differentiate between poor- and well-
fitting items.  A classification approach was used to measure the precision 
of the ICI in this study. A cut-score criterion, set at an ICI value of 0.5, was 
used to illustrate the classification characteristics for poor-fitting items.  
For example, if an item was calculated to have an ICI value of less than 
0.5, then that item was deemed to fit poorly with the expected responses 
from the cognitive model. This preliminary criterion for dichotomizing 
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item fit was needed because no point of comparison currently exists in 
determining an appropriate level of fit with an existing cognitive model. 
Further, an ICI value of 0.5 for any item translates to roughly 75% of the 
responses on a given item fitting with the expected skill pattern as 
defined by the cognitive model. Using this initial cut-score, we could then 
classify items as poor- or well-fitting.  
 
To ensure the classification results were consistently produced, each of 
the 27 testing conditions was replicated 100 times.  The dependent 
variables for the simulation study included the average proportion of 
correctly identified poor-fitting items and misclassification of well-fitting 
items across all conditions. The simulation environment, the 
implementation of the ICI, and the replication of results were 
programmed in R (R Core Development Team, 2011), and are available 
from the first author. 
 
Table 2 contains a summary of the mean ICIs for each condition.  The 
mean ICIs were calculated separately for the poor- and well-fitting items.  
The overall mean for poor-fitting items was 0.30 whereas the mean ICI for 
well-fitting items was 0.53. Three observations must be noted from the 
results in Table 2. First, test length tended to have a positive impact on the 
values of ICI.  For example, CDAs with only one item measuring each 
skill pattern (i.e., test length=15) had consistently lower ICIs compared to 
CDAs with two or three items measuring each skill (i.e., test length=30 or 
45). Second, as expected, the magnitude of the mean ICI differences 
between poor and well-fitting items tended to decrease when an increase 
in poor-fitting items included in the ICI. Third, the means of ICI were 
relatively stable across different sample sizes for each condition. 
 
Table 2. Summary of the mean ICIs across the three variables manipulated in 
the simulation study 
 

Sample 
Size 

Proportion of 
Poor Fitting 

Items 

Test 
Length 

Mean ICI 

Poor Fitting 
Items 

Well-Fitting 
Items 

800 5% 15 0.24 0.49 

 
5% 30 0.22 0.57 

 
5% 45 0.30 0.59 

 
10% 15 0.31 0.48 

 
10% 30 0.29 0.56 

 
10% 45 0.38 0.58 

 
25% 15 0.37 0.43 

 
25% 30 0.29 0.56 

 
25% 45 0.32 0.51 
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1600 5% 15 0.21 0.41 

 
5% 30 0.22 0.56 

 
5% 45 0.29 0.59 

 
10% 15 0.27 0.44 

 
10% 30 0.29 0.57 

 
10% 45 0.38 0.58 

 
25% 15 0.36 0.41 

 
25% 30 0.29 0.56 

 
25% 45 0.32 0.51 

2400 5% 15 0.24 0.55 

 
5% 30 0.23 0.58 

 
5% 45 0.30 0.59 

 
10% 15 0.32 0.53 

 
10% 30 0.30 0.57 

 
10% 45 0.38 0.58 

 
25% 15 0.32 0.53 

 
25% 30 0.29 0.56 

 
25% 45 0.32 0.51 

 
 
Items were also classified based on the cut-score criterion. This simulation 
process was repeated 100 times, with the correct classification rate, or 
power, being the likelihood of correctly identifying a poor-fitting item 
using the ICI across the conditions in the simulation study. The power 
values for the 27 conditions are shown in Table 3.  The conditions with the 
highest power were found in CDAs with the longest test-length (45), 
specifically with conditions that had the largest proportion of poor-fitting 
items (25%).  Under those conditions, the highest power was 0.99, 
meaning that for the ICI criterion of 0.50, 99% of all poor-fitting items 
were correctly classified across 100 replications. The lowest power values 
were found in conditions with the smallest sample size (800), where a 
power of 0.67 was found for a 30-item CDA with 5% of poor-fitting items 
and 1600 examinees.  
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Table 3. Power of ICI for identifying poor-fitting items 

 

Test  
Length 

Sample  
Size 

Proportion of Poor-Fitting Items 

5% 10% 25% 

15 800 0.68 0.76 0.92 

 
1600 0.93 0.89 0.95 

 
2400 0.79 0.79 0.92 

30 800 0.67 0.73 0.79 

 
1600 0.77 0.74 0.81 

 
2400 0.73 0.72 0.79 

45 800 0.76 0.80 0.99 

 
1600 0.77 0.83 0.99 

 
2400 0.76 0.81 0.99 

 
 
Table 4 summarizes the likelihood of a well-fitting item being 
misclassified by the ICI as a poor-fitting item in each condition. The 
lowest misclassification rates were associated with CDAs that have the 
longest test-length (45) and the smallest proportion of poor-fitting items 
(5%). Under those conditions, the lowest misclassification rate was 15%. 
The highest error rates were observed with the shortest test length (15), 
where misclassification was 78%. 
 
Taken together, the simulation study results highlight important trends 
and outcomes that can be used to interpret how accurately the ICI 
identifies poor-fitting items.  The power values of ICI were erratic when 
the number of items probing each skill pattern was small, but stabilized 
as the number of items representing each skill pattern increased.  For 
example, each increase in test length resulted in a decrease in the 
variation of power values among the same proportion of poor-fitting 
items and between different sample sizes.  This finding suggests that the 
reliability of using the ICI to classify poor-fitting items is related to the 
reliability of the CDA as a whole. Moreover, the proportions of 
misclassification were approximately 2.5 times higher in CDAs with a 
single item representing each test skills as compared to the other two 
levels. This outcome further supports the conclusion that as skills are 
measured more accurately, the ICI better distinguishes poor- from well-
fitting items.   
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Table 4. Misclassification rate of ICI in identifying well-fitting items 
 

Test  
Length 

Sample 
 Size 

Proportion of Well-Fitting Items 

5% 10% 25% 

15 2400 0.28 0.35 0.66 

 
1600 0.78 0.65 0.72 

 
800 0.50 0.50 0.66 

30 2400 0.16 0.20 0.22 

 
1600 0.28 0.20 0.27 

 
800 0.27 0.22 0.24 

45 2400 0.15 0.18 0.33 

 
1600 0.17 0.19 0.34 

 
800 0.15 0.19 0.33 

 
 
 
There were no obvious trends that the sample size manipulated across the 
three levels yielded important differences among the power or 
misclassification of well-fitting items.  This finding suggests that the 
sample sizes used in this study do not yield important ICI differences 
across our study conditions.  This outcome could also suggest that the 
representation of approximately 50 examinees per skill pattern may be 
sufficient for evaluation of the ICI.  
 
When the proportion of poor-fitting items was manipulated, the power 
increased with the proportion of poor-fitting items in the CDA, where the 
overall power rose as the proportion of poor fitting item increased. An 
increase of poor-fitting items also yielded more misclassification of well-
fitting items. This finding suggests that poor-fitting item responses 
contribute to an overall decrease in the magnitude of ICI, where the 
resulting errors are reflected using the classification criterion of 0.50.  

Study 2: Use Case Application 
The purpose of the second study is to demonstrate how the ICI can be 
used to identify poor-fitting items in an operational CDA. The ICI was 
used to evaluate item-model fit for a CDA program designed to assess 
students’ knowledge and skills in Grade 3 mathematics. From this CDA 
program, 324 students responded to an 18-item CDA (see Gierl, Alves, & 
Taylor-Majeau, 2010).  
 
The CDA we used was designed to evaluate student mastery for 
subtraction skills.  Each item was designed to yield specific diagnostic 
information in a hierarchy of cognitive skills were the first skill was the 
easiest (Subtraction of two consecutive 2 digit numbers) and the last skill 
was most difficult (Subtraction of two 2 digit numbers using the digits 1 
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to 9 with regrouping).  The CDA was developed as follows.  First, a 
cognitive model of task performance was created by specifying the 
cognitive skills necessary to master subtraction in Grade 3. The domain of 
subtraction was further specified into a set of six attributes related in a 
linearly hierarchical manner by a group of subject matter experts.  The 
attributes produced a total of seven unique patterns of skill mastery (six 
plus null).  Three items were created by content experts to probe student 
mastery on each attribute to ensure adequate representativeness of each 
skill pattern resulting in eighteen items for this CDA.  The test was 
administered to students in 17 Grade 3 classrooms.  A list of the attributes 
and the Q-matrix for the 18-item CDA are shown in Table A3 and Table 
A4 of the Appendix, respectively. 
 
Three hundred and twenty four student responses were collected, which 
would yield approximately 45 students per skill pattern if the patterns 
were distributed equally across the skills.  Participating teachers would 
first instruct on the topics relevant to subtraction within their classrooms, 
and then administer the CDA to students at a convenient time within 
two-week of instruction. The CDA was delivered using an online 
computer-based testing system.  Students were presented with CDA 
items that contain both an item stem to prompt for a typed-response and 
an interactive multimedia component that provided additional 
information for students to understand the item.  From this 
administration process, responses were collected, formatted and scored 
dichotomously.  As the participation of this CDA was voluntary, students 
with greater than two missing responses were removed from the analysis 
to minimize unmotivated responses (as the completion of the CDA was 
not mandatory). For the purposes of demonstrating the ICI, only the 
scored student responses were used.  
  
The results are summarized first at the test level and then at the item 
level. Overall, the results were ideal at the test level. The median HCI, 
which is used to quantify the fit of the responses to the expected model of 
response on a CDA, was 0.81. With a cut-off of 0.70 as the quality criterion 
for CDA designs (Gierl, Alves, & Taylor-Marjeau, 2010), this result 
suggests that the student responses fit with the expect model of response 
for subtraction. As the purpose of this CDA is to identify non-mastery 
students in order to refine and enhance instruction, the majority of 
students were expected to master the CDA. 
 

At the item level, Table 5 provides a summary of the results from the 
subtraction CDA. The p-values of each item and the discrimination value 
(i.e., point-biserial correlation) are presented along with the ICI values. 
Three findings should be noted from these results.  First, the ICI was not 
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correlated with either the difficulty or discrimination values.  This result 
supports the idea that item-model fit is summarizing a different outcome 
from the classically defined notion of difficulty and discrimination.  
Second, with items created in a principled manner, with three items 
representing each skill pattern, the real data results support the results of 
the simulation study. Further, as p-values decrease, ICI values increase 
because the items change from measuring simple to more complex skills. 
Third, using the cut-score criterion of 0.50 from the simulation study, only 
three items were deemed to have poor item fit (Items 1, 2, 3). The poor ICI 
values for these items may suggest a problem at the attribute level (see 
Table A3 in the Appendix for the description of the skills assessed). It is 
important to note that without the ICI conventional scoring and 
psychometric approaches would not have identified issues of misfit at the 
attribute level, where items one through three are performing nominally 
at the item level. Although subject matter experts did not evaluate the 
cognitive model in the light of the student results, a follow-up study may 
find that a reorganization of the attributes may yield better fitting 
responses.  

 
Table 5. Summary of the results from the subtraction CDA 

 

Attribute Item Number P-Value Discrimination ICI 

1 1 0.76 0.58 0.22 

 
2 0.78 0.87 0.39 

 
3 0.80 0.96 0.46 

2 4 0.84 0.89 0.64 

 
5 0.87 1.11 0.72 

 
6 0.85 0.94 0.65 

3 7 0.86 1.06 0.76 

 
8 0.80 0.68 0.65 

 
9 0.84 1.01 0.75 

4 10 0.77 0.79 0.73 

 
11 0.72 0.78 0.72 

 
12 0.75 0.82 0.73 

5 13 0.74 0.82 0.78 

 
14 0.77 0.92 0.79 

 
15 0.79 0.98 0.80 

6 16 0.35 0.56 0.81 

 
17 0.34 0.57 0.81 

 
18 0.33 0.53 0.80 
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Discussion 
The purpose of this study is to introduce a statistic for determining item-
model fit with CDA.  The item consistency index (ICI), an extension of a 
person-fit index for CDA called the Hierarchy Consistency Index (HCI), is 
a standardized outcome that measures the ratio of misfitting responses 
relative to the total number of response across all examinees on a given 
item.  Similar to the HCI, the requirements for evaluating item-model fit 
using the ICI is an item-by-attribute definition of skill mastery called the 
Q-matrix in addition to the student response vectors. The ICI has a 
maximum value of 1, which suggests all students responded identically to 
an expected skill pattern, and a minimum value of -1, which suggests 
item responses were the exact opposite to what the expected skill patterns 
suggest. We present two use cases to demonstrate the properties of the 
ICI under simulation. In addition, we demonstrate the applicability of the 
ICI through the use of real data to highlight how the ICI can be applied to 
identify poor-fitting items on a CDA. These two proof-of-concept 
applications demonstrate how the ICI can be applied in the real world 
and call for future studies to establish better evaluation criterion for the 
ICI.    
 
Results from the simulation study provided some general insights on how 
the ICI performs as a method for detecting item misfit in CDA across a 
range of testing conditions.  Using a cut-score classification method to 
determine poor-fitting items, the ICI was able to identify the majority of 
the poor fitting items across different simulated conditions.  Although the 
item-model fit is described in a range by the ICI, the use of a cut-score to 
classify poor fitting items provided a simple outcome to interpret for 
evaluating how the ICI will perform in a given testing scenario.  In 
addition, results from the simulation study demonstrated a few 
assumptions that must be met for the ICI to detect item misfit accurately. 
The number of items used for each skill pattern and the total number of 
poor fitting items were two features that affected ICI performance.  The 
implication from these findings demonstrate that although CDA demands 
a different paradigm of scoring and statistical approaches, traditional 
issues such as consistency of the responses for a given set of skill can still 
be problematic in estimating item-model fit.  From our simulation results, 
we suggest the use of three items per attribute or more per skill pattern to 
ensure adequate ICI detection.  This finding is consistent with the 
research in establishing an adequate reliability in measuring attributes of 
skills (Gierl, Cui, & Zhou, 2009), where the authors stated that the idea of 
a short yet diagnostic test will not likely yield results with sufficient 
reliability.   
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Sinharay and Almond (2007) noted that tests with many poor-fitting items 
indicate a problem with the overall model, whereas tests with few poor-
fitting items indicate problems lie in the items themselves.  In our 
simulation, we demonstrated that the ICI will produce similar results, 
where an increase of poor-fitting items in a CDA will lower the precision 
of the ICI. This finding may be linked to the fact that as more poor-fitting 
items are introduced, these items affect the fit of items requiring the same 
set of skills leading to an overall decrease in magnitude of ICIs. Table A5 
in the Appendix illustrates this effect, where the mean ICI for well- and 
poor-fitting items under the 45-item simulation decreases as the 
proportion of ICI increases. In sum, a rigorous and principled test 
development process is needed for CDA to ensure all test items are 
created with minimal deviation from the expected set of skills they were 
designed to probe. Otherwise, poor model-fit results will lead to poor 
diagnostic outcomes.   
 
The second study provided a snapshot on the utility of the ICI when 
applied to an operational CDA.  Using a set of carefully designed CDA 
items, the ICI detected three consecutive poor-fitting items at the 
beginning of the assessment.  This finding suggests that the ICI can not 
only be used for evaluating item-model fit, but can also be used for 
evaluating the consequences of test design at the item, attribute, or the 
cognitive model level.  In our example, the three items flagged as poor 
fitting measure the same attribute revealing that the attribute may be mis-
specified in the cognitive model.  In addition, the independence of ICI 
from the difficulty and discrimination values suggest that item model-fit 
for CDA provides a unique measure of how an item is able to accurately 
predict performance.  Hence, the definition of a good item for CDA may 
not only be how well an item is able to distinguish poor-performers from 
good-performers, but also how consistently an item can elicit responses 
that match the expected response patterns specified in the cognitive 
model (i.e., Q-matrix).  
 
Item-model fit is challenging to measure, especially when cognitive 
inferences are involved in the test design.  Items have to be aligned with 
the cognitive skills in the Q-matrix, skills have to be defined and 
organized in a systematic manner, and examinee responses have to match 
the expected skill patterns.  The ICI can provide a source of evidence for 
identifying poor-fitting items or poor models for Q-matrix based CDA.   
 
Implications for Future Research  
By introducing and demonstrating an item-model fit index for CDA, our 
study provides two practical implications for the development of 
diagnostic assessments in addition to a new measure of item-fit.  The ICI 
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has the benefit of applicability, meaning that it can be used with a Q-
matrix based CDA for determining the relationship between items and 
skills.  Using the Q-matrix, item and examinee responses can be 
compared to provide a measure of item model-fit.  While research on 
CDA has prompted a plethora of diagnostic scoring methods, one 
common starting point is the use of the Q-matrix in defining the skills and 
item requirements.  Because item development, validation, and 
administration all depend on the veracity of the Q-matrix, evidence for 
validating the cognitive model is paramount.  The ICI offers some initial 
evidence that can be used for validating the definition of skills through 
item response patterns to determine the relative fit between an item and 
its set of required skills defined in the Q-matrix. 
 
While the ICI provides a new statistical method for scrutinizing CDA 
development, the second study highlighted the fact that the most crucial 
part of a well-designed CDA remains with item development.  The 
importance of item development is, sometimes, neglected in CDA.  
Although CDA scoring methods can account for different levels of skill 
contributions, the link between how a skill is measured with how the skill 
is presented in the form of an item remains largely a subjective 
interpretation of the test developer and content specialist who create the 
CDA.  To reliably measure a set of skills, multiple items are needed. Yet 
creating parallel items is often time consuming and expensive.  Ensuring 
that each item is uniformly developed with the same set of skills is one 
critical activity in test development for CDA that ensures examinees 
receive useful diagnostic feedback.The ICI is co-dependent with all items 
requiring a related set of skills. Therefore, to ensure adequate item model-
fit, every item in the CDA must adhere to a high level of quality and 
alignment relative to the expected skill the item is designed to measure.   
 
Through introducing an item model-fit index for CDA, we have 
demonstrated how such measure can be applied to identify problematic 
items that are aberrant from the expected response model. This initial 
study provides directions of future research as further investigation is 
needed to apply and validate the use of this index. We also suggest three 
directions of future research. First, more research is needed to ensure 
different structures of knowledge represented by the Q-matrix can be 
evaluated with the ICI to identify misfitting items. The number of 
possible skill pattern representation increases exponentially as the 
number of evaluated skills increases, therefore more research is needed to 
ensure ICI provides an appropriate measure for different organization of 
skills.  Second, guidelines to interpret ICIs are needed so we can 
accurately identify and distinguish adequate and problematic items. As 
the ICI provides a scaled measure of item model-fit, interpretations of the 
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index has not yet been established and is required to determine the 
adequacy threshold of item model-fit. Third, as the reliability of CDA 
measures is highly dependent on the defined skills, more research is 
needed to determine which model structure is ideal in the application of 
the ICI. Our analysis relies on non-compensatory attributes, meaning 
skills are independently defined, acquired and cannot be moderated by 
existence of other skills. This will likely limit the ICI in measuring item fit 
for testing complex skills but not for general skills such as elementary 
mathematics. More research is needed to evaluate appropriate use cases 
of the ICI.   
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APPENDIX A 
 

Table A1. The Q-matrix and skill patterns used for the simulation of CDA 
responses  

  

Pattern 

Skill 

1 2 3 4 5 6 7 

1 1 0 0 0 0 0 0 

2 1 1 0 0 0 0 0 

3 1 1 1 0 0 0 0 

4 1 1 0 1 0 0 0 

5 1 1 1 1 0 0 0 

6 1 1 0 1 1 0 0 

7 1 1 1 1 1 0 0 

8 1 1 0 1 0 1 0 

9 1 1 1 1 0 1 0 

10 1 1 0 1 1 1 0 

11 1 1 1 1 1 1 0 

12 1 1 0 1 0 1 1 

13 1 1 1 1 0 1 1 

14 1 1 0 1 1 1 1 

15 1 1 1 1 1 1 1 
 
 

Table A2. Variables manipulated in the simulation   
 

  Level 

Conditions 1 2 3 

Test length 15 30 45 

Sample size 800 1600 2400 

Proportion of poor-fitting items 5% 10% 25% 
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Table A3. Description of the skills assessed in the CDA for subtraction in Grade 3 
 

Cognitive 
Attribute # 

Skill Descriptor: Apply a mental mathematics strategy to subtract 

6 Two 2 digit numbers using the digits 1 to 9 with regrouping 

5 Two 2 digit doubles (e.g., 24, 36, 48, 12) 

4 Two 2 digit numbers where only the subtrahend is a multiple of 10 

3 Ten from a 2 digit number 

2 Two 2 digit numbers where the minuend and subtrahend are multiples of 10 

1 Two consecutive 2 digit numbers (e.g., 11, 22, 33) 

 
Table A4. Q-matrix of the CDA for subtraction in Grade 3 
 

Pattern 

Skill 

1 2 3 4 5 6 

1 1 0 0 0 0 0 

2 1 0 0 0 0 0 

3 1 0 0 0 0 0 

4 1 1 0 0 0 0 

5 1 1 0 0 0 0 

6 1 1 0 0 0 0 

7 1 1 1 0 0 0 

8 1 1 1 0 0 0 

9 1 1 1 0 0 0 

10 1 1 1 1 0 0 

11 1 1 1 1 0 0 

12 1 1 1 1 0 0 

13 1 1 1 1 1 0 

14 1 1 1 1 1 0 

15 1 1 1 1 1 0 

16 1 1 1 1 1 1 

17 1 1 1 1 1 1 

18 1 1 1 1 1 1 

 
 
Table A5. Summary of the mean ICI in extreme situations when n=2400 
 

Item Quality  
Proportion of Poor-Fitting Items 

0% 25% 50% 100% 

Well-Fitting Items 0.61 0.49 0.39 n/a 

Poor-Fitting Items n/a 0.33 0.28 0.15 

 


