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Abstract. While the Examination Council of Lesotho (ECOL) is 
burdened with a huge workload of assessment tasks, their procedures 
for developing tests, analysing items, and compiling scores heavily rely 
on the classical test theory (CTT) measurement framework. The CTT has 
been criticised for its flaws, including being test-oriented, sample 
dependent, and assuming linear relationships between latent variables 
and observed scores. This article presents an overview of CTT and item 
response theory (IRT) and how they were applied to standard 
assessment questions in the ECOL. These theories have addressed 
measurement issues associated with commonly used assessments, such 
as multiple-choice, short response, and constructed response tests. Based 
on three search facets (Item response theory, classical test theory, and 
examination council of Lesotho), a comprehensive search was conducted 
across multiple databases (such as Google Scholar, Scopus, Web of 
Science, and PubMed). The paper was theoretically developed using the 
electronic databases, keywords, and references identified in the articles. 
Furthermore, the authors ensure that the keywords are used to identify 
relevant documents in a wide variety of sources. A general remark was 
made on the effective application of each model in practice with respect 
to test development and psychometric activities. In conclusion, the 
study recommends that ECOL switch from CTT to modern test theory 
for test development and item analysis, which offers multiple benefits. 

Keywords: classical test theory; item response theory; Examination 
Council of Lesotho; item development; item analysis  

 
 

1. Introduction 
The Examinations Council of Lesotho (ECOL), the central body for all 
examinations and assessments in Lesotho, is located right in the heart of Maseru, 
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the capital. The Examinations Council Regulations were enacted in 1986. It was 
then configured as a unit of the Ministry of Education and Training (MOET), 
responsible for conducting public examinations at the national level.  ECOL is a 
non-profit organisation that undertakes various functions, including the control 
and arrangement of public examinations, the issuance of certificates to all 
successful applicants, and any other things necessary or incidental to the proper 
administration and functioning of the Council (Exam Council of Lesotho, 2018). 
 In 2003, the ECOL's mandate was further expanded to include assessing the 
educational system's performance and developing continuous assessments for 
usage by providing school materials to facilitate the assessments. Therefore, 
seeking to become the world's premier assessment institute offering high-quality 
services, maintaining high standards of quality in professional education, and 
ensuring that integrity is maintained in executing their core responsibility of 
internationally recognised certifications to students at the pre and basic levels. 
However, ECOL's responsibilities encompass a range of activities, including the 
development, implementation, monitoring, and evaluation of an appropriate, 
fair, and reliable education assessment system for elementary and secondary 
schools, as well as awarding internationally credentialed qualifications that 
become part of the education system (Exam Council of Lesotho, 2018).  

ECOL also administers level evaluations at specific points in the education 
system, such as in Grade 7 when students take their Primary School Leaving 
Examination (PSLE), in Junior Secondary, Form C (Junior Certificate 
Examination), and in Senior Secondary, Form E (O'Level/LGCSE). Furthermore, 
it conducts the National Assessment Survey in partnership with the National 
Curriculum Development Center at the elementary level (Grades 4 and 6). Every 
two years, these surveys are conducted to evaluate the educational system's 
performance throughout the country in numeracy and literacy. It is worth noting 
that the Cambridge International Assessment accredits the O' Level curriculum 
and examinations. As well as administering exams, the Council acts as an agent 
for other international testing bodies, such as the University of London and the 
Management College of Southern Africa (MANCOSA). Despite the 
overwhelming assessment tasks that ECOL is saddled with, experience and 
mode of operation show that their procedures for test development, item 
analysis, and scoring framework are heavily reliant on the classical test theory 
(CTT) method of measurement, which has been criticised for its shortcomings, 
such as test-oriented rather than item-oriented, assumes linear relations between 
latent variables and observed scores, hence it is impossible to estimate the true 
score directly, or without making strong assumptions, item parameters such as 
discrimination and difficulty of the test items depend on the sample used, and 
the standard error of measurement, a function of test score reliability and 
variance, is universal for all examinees. These limitations can pose several 
challenges when used in high-stakes exams such as ECOL. For instance, CTT 
fails to account for observed distributions of test scores that have the floor or 
ceiling effects, in which a large proportion of examinees score near the low or 
high end of the range (Demars, 2017; Jabrayilov et al., 2016; Rusch et al., 2017). 
Due to difficulties in resolving these problems within the framework of classical 
measurement theory, the measurement community and assessment 
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organisations have switched to a modern theory known as item response theory 
(IRT) (Embretson & Reise, 2013).  

CTT's shortcomings were addressed with the development of modern theory, 
which allows for non-linear relationships, estimation of the true score 
independent of the sample used, sample invariant estimation of parameter 
values, and gives an assessment expert the ability to select items that are in 
accordance with the desired model and applies internal consistency and 
reliability concepts to derive more information about how measurements are 
conducted. IRT has also been established as an essential tool for test 
development, item analysis, and evaluation, which leads to precise, valid, and 
relatively less burdensome instrument responses (Edelen & Reeve, 2007). The 
plethora of studies have confirmed that the IRT framework offers a multitude of 
advantages that have sparked the interest of educational assessment institutions, 
test developers, and policymakers in the assessment industry, who have 
adopted it for valid and reliable decision making (Ayanwale et al., 2019; Cai et 
al., 2016; Embretson & Reise, 2013; Ewing et al., 2005; Ganglmair & Lawson, 
2010; Hambleton & Swaminathan, 1985; Lang & Tay, 2021). To date, ECOL has 
yet to embrace and integrate the potential of IRT in educational assessments and 
testing despite its promising development. The purpose of this paper is to fill 
this gap by encouraging ECOL to incorporate IRT into their existing 
methodologies by providing an overview of each measurement theory, its 
assumptions, its models, weaknesses, and strengths to improve the assessment 
and scoring procedures currently used by ECOL, which in turn enhances the 
validity of the certificate awarded. 

2. Classical Test Theory 
Imagine examinees are given 20 questions. Sixteen of the 20 questions are 
equally hard; two are difficult while two are easy. The two examinees get 18 test 
items correctly. Both get 90%. Examinee "A" has made two simple mistakes, 
while examinee "B" has made two very complicated ones. How can we 
determine which examinee has more ability? This scenario highlights a 
significant flaw in the CTT method of testing. Historically, CTT refers to a theory 
of test scores in which three elements (observe, true, and error scores) are 
introduced (Hambleton & Jones, 1993; Steyer, 2001). Models of various forms 
have been developed within the theoretical framework. 
 

In the classical test model, two unobservable variables are linked to an 
observable test score (X), true score (T), and error score (E), that is: X = T + E. 
True score cannot be observed directly; It can only be estimated from an 
examinee's responses to a set of items whose responses correspond to the actual 
abilities that particular examinees possess, though there are inherent errors in 
estimation. Factors such as fatigue, guessing, or stress can cause random errors 
(Bovaird & Embretson, 2012). Examinees' observed scores represent their total 
scores on a test. It would have been the true score if not for the error score. 
Standard error of measurement (SEM) plays a major role in CTT, which are 
standard deviations of measurement errors for each group of examinees. A test's 
variability or spread can be determined from its measurement errors. In X = T + 
E, the true score equals the average of a person's observed scores and accounts 
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for measurement error. Because measurement error cannot be determined, every 
standardised test has an SEM. SEM is measured in standard deviations. In this 
way, the reliability of the test is determined. Precision and reliability of 
measurements are higher with a smaller SEM. The error in CTT is conceived as 
random and non-systematic. Several factors, internal or external to the examinee, 
may account for it. Test items created poorly or tested under poor conditions are 
examples of external errors. Internal errors are those caused by the examinee, 
such as fatigue, stress, and a lack of concentration (Ayanwale, 2019). 

Item and test level statistics are part of CTT. Item difficulty and discrimination 
are analysed at the item level. Item difficulty index is represented by ‘p’ and 
indicates the proportion of correct answers. The item discrimination index is 
indicated by a ‘D’; it tells us how distinct the item is between those with high 
and low abilities. CTT looks at the reliability of parallel tests (Demars, 2017). A 
parallel test measures the same latent ability with the examinees having the 
same true score and errors on both tests. Many items are generated that 
represent a single content domain for parallel tests. Ideally, this set should have 
twice the number of items intended for a single test form (Brown, 2013). 

2.1 Assumptions of classical test theory 
In CTT, three assumptions are made. First, the correlation between the error and 
true scores is zero. In this case,  the variance of a true and error score is equal to 
the variance of the observed score, which is true if  ƔTe = 0 (Steyer, 2001). In the 
equation Var(X) = Var(T) + Var(E), Var(.) is the variance, while the reliability 
Rel(X) is defined as   

Rel(X) = 
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Consequently, correlation coefficients between two parallel measurements 
determine the reliability of the CTT test. Adedoyin (2010) argues that error 
variance decreases as measurement reliability increases. When the error variance 
is small, the observed score of test-takers is close to the true score. However, 
when error variance is large, observed scores do not always reflect true scores 
(IResearchNet, 2022). The second assumption says errors have a zero mean. 
Thus, these random errors are expected to cancel out over many repeated 
measurements, resulting in a zero expected mean error rate. The observed score 

equals the true score once an error is zero, (X=T),∑
E

N
= 0

𝑛
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A third assumption is that measurements from parallel are uncorrelated. A 
parallel test is defined in classical test theory as two measures of X and X1 that 
have the same true score (T=T1) and the same observed variances δ2(X) = δ2(X1). 
Ojerinde (2013) suggests that two tests can be considered parallel if the expected 
values of X and X1 are equal (that is, E(X) = E(X1)). There is typically an equal 
error variance for the two parallel scores if X ║ X1 if X1 = X2 = Ti + Ei for every 
population of tests. 
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2.2 Classical test theory method of item analysis 
Test items are analysed quantitatively and qualitatively to determine their 
characteristics. To facilitate instrument improvement, the purpose is to revise or 
discard items that do not meet minimally acceptable standards. In item 
development, it is crucial to consult experts who possess a mastery of relevant 
materials. Experts and review boards find it difficult to determine the quality of  
"poor" items because of the test content's multidisciplinary nature and 
examinees' demographics (Krishnan, 2013). Data analysis helps identify issues 
that slipped experts' attention. The goal of item analysis is to select items that 
maximise reliability. Matching what is taught with what is assessed is crucial. 
There should be a mixture of basic and advanced knowledge in any exam. 
Examinees become frustrated if items are too difficult, while overconfidence and 
a decline in motivation are consequences of too easy assessments (Esmaeeli et 
al., 2021). Creating item banks that are reusable is important through item 
improvement. Ayanwale et al. (2019); Crocker and Algina (1986) defined item 
analysis as evaluating test items for test construction and revision. This is a 
technique for improving test items. In addition to identifying biased or unfair 
items, item analysis can also identify poorly worded questions (Grand et al., 
2013; Khan et al., 2013). Results of item analysis are then used to refine the items 
of interest. Revision is needed for items that are more difficult or too easy. In 
addition, test scores can be observed to enhance item analysis by observing their 
reliability, although the literature on measurement discusses item analysis 
separately from reliability. To establish test scores' reliability, item difficulty and 
discrimination are essential components of item analysis(Elgadal & Mariod, 
2021; Toksöz & Ertunç, 2017).  

2.3 Parameter estimation of Classical test theory 
Item difficulty is an important concept in CTT. For DeVellis (2006), it is the 
percentage of examinees who answered an item correctly. In CTT, item difficulty 
is sample-based. These values are invariant only for groups of similar level 
examinees. CTT often refers to item difficulty as a p-value. Divide the number of 
respondents who selected a particular answer by the total number of 
respondents in the sample to find the percentage of those deciding to pick that 
response, and you get a p-value for each response and the correct answer. The p-
values can be expressed mathematically as: 
p = number of an examinee who got the item right 

     total number of an examinee who attempted the items 

The proportion of examinees that got the item wrong can be expressed as: 

q = number of an examinee who got the item wrong 

      total number of an examinee who attempted the items 

Hence, pq is the variance, and (SD = √pq) is the standard deviation. The item 
difficulty index (p) ranges between 0 and p ≤ 1. A value of 1 is considered to be 
very simple if all members of the sample correctly answered the question, while 
a p-value of 0 is indicative of none of the respondents in the sample answering 
the question correctly; such an item is said to be hard (Cappelleri et al., 2014; 
Kline, 2014). For Courville (2005), Items with dichotomously scored items have a 
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greater item variance (that is, σi2 = piqi), indicating the importance of the item 
difficulty (p) in the variance measure, while (q) indicates the significance of the 
item type (difficulty). The items variance and the total variance of the result are 
thus representations of item difficulty. 
 
 

Further, Crocker and Algina (1986) pointed out that the item difficulty of a 
norm-referenced test usually falls between 0.60 and 0.80. The reason is due to the 
item format typically used on such tests. Open-ended questions have a remote 
or zero likelihood of being answered correctly. The probability of guessing 
correctly increases when the test format is multiple choice. As a result, p is the 
proportion of respondents who know the answer (p), and 1/m is the number of 
responses that reflect how many of those who didn't know the answer but 
correctly guessed (m) responded. As a multiple-choice test, we do not aim to 
maximise item difficulty at p=0.50; instead, we aim to maximise item score 
variability. Hence, item difficulty should optimise item score variability. The 
proportion of correct answers is 1/m, which is known. In addition, item 
variation at 0.50 is the optimal level; the p-values of items with maximum true 
score variance also vary due to examinees' random guessing. This can be written 

as p1=
m

5.0
5.0 + , where p1 is the observed p-value, and m is the number of 

alternatives or distracters. 

However, the item difficulty index that maximises item variance is 
(p1=0.5+0.125) = 0.63 for multiple-choice items with four (4) options, and 
(p1=0.5+0.1) = 0.60 for five (5) options (Cohen & Swerdlik, 2009; Cohen et al., 
2013; Filgueiras et al., 2014; Hill et al., 2013). Items in a test with a difficulty level 
higher or lower than 0.60 and whose difficulty level exceed or fall below 0.63 
should be deemed inappropriate. In traditional norm-referenced testing, items 
with a difficulty index greater than 0.70 or less than 0.30 are considered bad 
items (Adegoke, 2013; Hambleton & Jones, 1993). 

Item discrimination is another CTT parameter. It indicates that the examinee's 
ability differs. Generally, high, average, and low scores are expected. Among the 
purposes of analyzing test items is selecting items that can separate examinees 
into different categories with respect to their abilities. High-ability examinees 
should be able to score a test item correctly, while low-ability examinees will 
score it incorrectly. Test items that have such properties are discriminatory by 
nature. Criterion scores place examinees in upper or lower groups based on their 
total test scores. This grouping of examinees makes the discrimination index 
controversial (Algina & Swaminathan, 2015; Rusch et al., 2017).  The lower 
group had 50% participants, while the higher group had 50%. A criterion of 
interest is easily distinguished between very high and very low scores. 

For Kelley (1939), cited in Ayanwale (2019), suggested that instead of 50%-50%, 
the item discrimination statistic would function correctly with a 27%-27% split 
since it would omit 46% of the data. As the sample size increases, the same 
statistic becomes as stable and useful when using a 27%-27% split (Crocker & 
Algina, 1986). A high score on a particular item usually indicates an examinee 
who has done well on the test. Hingorjo and Jaleel (2012); Vyas and Supe (2008) 
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suggest that items with negative discrimination should be revised or discarded if 
they are selected by a larger percentage of the lower scoring group than the 
higher scoring group. If an item is high- or low-performing, item discrimination 
can be calculated as D = pu – pl, where pu is the proportion of correct answers for 
the upper group, and pl is the proportion of correct answers for the lower group. 
After identifying the top 27% and bottom 27% of examinees, the percentage 
passing for each item is calculated for each group. The item discrimination index 
is obtained by subtracting the 'p' of the lower-performing group from the top-
performing group. The index ranges from 0 to 1. A classic interpretation of item 
discrimination is provided by (Ebel, 1965): 
1. If D ≥ 0.40, very well-functioning item. 

2. If 0.30 ≤ D ≤ 0.39, reasonably well-functioning item. 

3. If 0.20 ≤ D ≤ 0.29, marginal items need to be revised. 

4. If D ≤ 0.19, a poorly functioning item needs to be expunged or fully revised. 

More importantly, a discrimination index provides information about how an 
item differs on a certain criterion. This is problematic since it ignores a lot of 
data. For example, several examinees are omitted (46% of respondents), and 
information regarding examinees in the higher and lower groups (Courville, 
2005). The product-moment correlation coefficient is applicable when the total 
and item scores are interval scales. A point-biserial correlation between 
dichotomous scored items and the total score is employed to resolve the 
problem (Adegoke, 2013). It measures the direction of the linear relationship of 
one factor with another that is continuous (Privitera, 2012). In point-biserial 

notation, pbis = 
q

p

x

xy








 −



 )(
with μy is the criterion score mean for the 

proportion of respondents answering the question correctly, while μx is the 
overall criterion score. A correlation coefficient between an item's performance 
and an examination's performance is also used to establish item discrimination 
(Brown, 2013; DeVellis, 2006). As a result, p-bis represents the correlation 
between items and total scores. The correlation should be positive since it 
demonstrates that correct answer holders scored higher and incorrect answer 
holders scored lower. If negative, you should revise or discard the items. The 
higher the value, the stronger the discrimination. 

2.4 Reliability of scores in the context of classical test theory 
The reliability of a test is the ability for identical scores to be achieved over a 
specified period whenever the same population of test subjects is examined 
(Demars, 2017). A reliability coefficient is expressed numerically, and any value 
around 0.70 and above is a good estimation of the reliability coefficient for an 
instrument (Preston et al., 2020). Tests with perfect reliability are seldom 
available, that is, tests capable of reproducing the same scores when 
administered to the same group. The observed results of a highly reliable test are 
close to its true scores. Therefore, using the square of the correlation between the 
observed and true score, the reliability coefficient can be calculated (Birnbaum, 
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1968). For Dent et al. (2001), true score variance is considered when determining 
reliability. Reliability estimates are based on random measurement errors and 
can be categorised into different types (Gay et al., 2011). 

Using the test-retest method of reliability has two shortcomings. It is costly and 
time-consuming to administer the instrument for the first time, let alone for a 
second time. The resulting higher cost is far more concerning. If the sample 
population is high in mortality, it is more difficult to assess the reliability 
(Crocker & Algina, 1986). Secondly, the test-retest method can cause reactivity, 
as described by (Downing, 2003). Reactivity occurs when repeated testing 
eventually leads to a substantive change. In testing, memory is the main cause of 
reactivity. The memory may impact performance on the second test from the 
first test. Alternative reliability tests have been developed to solve these issues.  
A correlation is established between two similar tests administered to the same 
group (Crocker & Algina, 1986).  

The test-retest method has reactivity problems which the alternative form 
method solves but has its problems. This method has a significant flaw because 
it is impossible to guarantee that each test samples the same content. This 
happens whenever you use two tests. To solve this problem, a single test 
reliability coefficient was developed. One administration of a single test is a 
method of estimating reliability. As a method of assessing reliability, internal 
consistency relies on the extent to which items within a single test are consistent 
with each other and the test overall. Split-half reliability is appropriate for long 
or hard tests, and Kuder-Richardson reliability (KR-20) is only appropriate for 
items with dichotomous scores, like selection-response tests.  By using the split-
half method, a test is given to all samples at once, then the test is divided into 
two parts, and the parts are compared (Crocker & Algina, 1986; Jabrayilov et al., 
2016) claimed that splitting the test in many ways won't produce a unique 
estimate of reliability. This caused an important issue in reliability.  Spearman 
(1910) developed the Spearman-Brown formula to estimate the reliability 
coefficient for the scores on the whole test to correct the pitfalls associated with 
split-half correlation.  

For reliability estimation, item covariance methods are the most commonly used. 
The Cronbach alpha coefficient is the main method used to measure the internal 
consistency of a test or scale in the psychology and education fields (Demars, 
2017). Alpha is merely a measure of precision and is not a measure of stability 
(Crocker & Algina, 1986).  Kuder Richardson 20 (KR20) is the second item 
covariance analysis. Each item in the test is rated between 0 and 1. This score 
indicates how items in a given test measure the same construct or concept—the 
alpha coefficient increases when test items are highly correlated. Testing 
reliability and alpha are not only affected by correlation, but also depends on the 
length of the test. Therefore, a low value of alpha may reflect poor inter-item 
correlation or a long test. Mona (2014) recommends eliminating items with poor 
correlation or revising them.  
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2.5 Merits of classical test theory 
CTT remains popular among educators despite new approaches to measuring 
proficiency (De Champlain, 2010). Its basic concepts are straightforward. Among 
its advantages, it makes relatively weak assumptions. The assumptions in CTT 
enable it to be applied to a wide variety of data. Anyone with basic mathematics 
skills can quickly grasp the concepts, as they aren't mathematically demanding. 
Cronbach's alpha measures reliability. CTT can be used to conduct the analyses 
with the common statistical packages. Psychometricians in education and 
psychology find it more acceptable. 

Further, CTT-based measurements of instruments easily fit into underlying 
models, thus yielding desirable results. CTT is appealing because individual 
items don't have to be optimal, even if they relate only partially to an underlying 
construct; the concern can be alleviated by creating several items that assess the 
construct. Researchers have found that reliability can be improved to any 
desired level by increasing the number of items on a specific test concerning a 
variable (Wells & Wollack, 2018). 

2.6 Limitations of classical test theory 
For Rusch et al. (2017) noted that the assessed sample of examinees influences 
both item difficulty and discrimination indices. The study of Kolen (1981) found 
that the difficulty index is higher for examinees with high ability. In CTT, item 
difficulty has a bearing on examinee ability scores. Observed test scores are 
higher if the items are easy and lower if they are difficult. Another flaw in CTT 
assumes that all examinees have the same measurement error. A test's type 
influences test scores and true scores. The items on the test determine what 
students' scores will be. It is still possible to score lower on difficult tests and 
higher on easier ones, even though one has the same ability. Depending on each 
student's ability level, scores differ in error amounts. CTT also has the limitation 
that the same items must be used to compare examinees' performance. Parallel 
forms are difficult to achieve in CTT, further aggravating this limitation. Test 
reliability depends on parallel testing, which is based on a sample provided by 
the examinee. 

For Traub (2015) argues reliability is a useful index of a test score's quality. Such 
an indicator depends on the characteristics of the group of test-takers. It is also 
test-oriented, making it difficult to predict examinees' responses to a test item 
(Crocker & Algina, 1986). Test developers cannot predict a test taker's 
performance on a particular item based on the CTT model. Examinee and item 
dependence is the most significant limitation of CTT. They are both affected by 
changes in the other's characteristics. Hence, comparing the characteristics of 
different tests and items taken by different groups of students is difficult. 
 

3. Paradigm shift from classical test to item response theory 
Several new measurement methods are being developed due to the limitations 
discussed above. In CTT, the group dependence, item-examinee ability 
mismatch, weak assumptions, and parallel testing problems present limitations. 
As an alternative, item response theory (IRT) or latent trait theory provides a 
solution to CTT's shortcomings (Bovaird & Embretson, 2012). Many other 
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models focusing on measurement issues developed an alternative model. Since 
IRT focuses on the item, all statistical analyses are done at the item level. It is one 
of the greatest advantages over CTT. Numerous studies in the fields of 
education and psychology have highlighted the same concept (Cappelleri et al., 
2014; Embretson & Reise, 2013; Tay et al., 2015). The evidence demonstrates that 
IRT is widely used in these fields, and medical education is no exception (De 
Champlain, 2010; Downing, 2003; Preston et al., 2020). 

Moreover, IRT is widely used to develop valid and accurate data about students' 
learning competencies in testing centers worldwide. The CTT assumptions were 
challenging to test and apply to practical problems, leading to alternative 
measurement models. The models are essentially extensions and liberalisations 
of conventional test theory. In addition, IRT is a necessary tool that has to be 
available in any large-scale testing center that requires a valid and reliable 
instrument. 

4. Item response theory 
IRT is a statistical model that describes both examinee items and test 
performance and further explains how the test results relate to the abilities 
reflected in the items on the test (Embretson & Reise, 2013). Responses to items 
may be discrete, continuous, or dichotomous. A score category may be ranked or 
unranked. One or more abilities may explain test scores. A variety of models can 
explore the relationship between item responses and underlying abilities. IRT 
has established and applied several models to test data. Hambleton and 
Swaminathan (1985) analysed the characteristics of item models as follows: the 
model should describe how observed responses relate to underlying non-
observable constructs, the model should provide an estimation of the underlying 
construct, the examinee's scores must help estimate the construct, and the 
performance of an examinee must be completed predicted or explained by the 
underlying constructs. According to item response theory, an examinee has 
some unobservable, latent abilities that cannot be studied directly. IRT is used to 
develop models to relate latent traits to observable characteristics of an 
individual, especially their abilities to correctly answer questions in a test (Baker 
& Kim, 2017; Magis, 2007).   

IRT employs mathematical functions, unlike classical test theory (CTT), which 
uses the model X=T+E. Based on Hambleton and Swaminathan (1985), IRTs are 
characterised by a strict relationship between responses and traits. Further, IRT 
is based on the assumption that one or more examinees' abilities can be 
predicted from theta (θ), which constitutes one of the parameters. Additionally, 
Crocker and Algina (1986) found that the observed score and the ability 
parameter are related to the observed and true scores. Their study highlighted 
that item difficulty and discrimination do not depend on examinee 
characteristics. Additionally, the ability estimates are likewise independent of 
the items and can be described as item-free, while the ability parameters are 
person-free. 
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4.1 Assumptions of item response theory 
IRT models are fitted to data based on assumptions about the data (Edelen & 
Reeve, 2007). Assumptions in test theory state that an examinee will answer the 
question correctly if they know the correct answer. Without this assumption, 
testing is not justified. Other assumptions include local independence, 
dimensionality, and monotonicity. The assumptions should hold regardless of 
the latent trait method employed. These assumptions must be met for a test set 
to be meaningful when estimating latent trait models (Bichi & Talib, 2018; Zhu & 
Lu, 2017). 

4.1.1. Dimensionality 
A set of latent traits can explain test performance. A vector of ability scores can 
describe an examinee's ability in n-dimensional (θ1, θ2, θ3….. θn). Items 
responding to the test with more than one latent trait are called 
multidimensional items, while items responding to the test that assumes one 
latent trait are known as unidimensional items. Only one area of knowledge, 
ability, or construct is measured in the items (Tay et al., 2015). The items on a 
one-dimensional test reflect only one dimension. One-score tests implicitly 
imply that the items share an overarching primary construct. In this model, each 
examinee is assigned single theta *, and uncontrolled variables can affect item 
responses as nuisance dimensions unique to the item and not shared by other 
items (Adewale et al., 2017). A test or ability scale containing all its items must 
measure a single latent attribute of an individual. Violating this assumption may 
lead to misleading results (Immekus et al., 2019).  

In their study, Ojerinde and Ifewulu (2012) identified multiple methods for 
testing unidimensionality, such as the Cronbach analysis test, exploratory factor 
analysis, eigenvalue test, random baseline test, biserial test, factor loading test, 
congruence test, congruency or part-to-whole test, and vector frequency test, as 
well as confirmatory factor analysis. Various methods exist for assessing the 
unidimensionality of test data, depending on the nature of the test data. 
Predictive continuous and normally distributed data are tested for 
unidimensionality through parallel analysis, which VistaParan and MPLUS 
implement, or confirmatory factor analysis based on Pearson's correlation matrix 
(Adewale et al., 2017; Kline, 2005) implemented in AMOS or LISREL. Generally, 
polychoric correlation can be used parallel (implemented in FACTOR; Vista-
Paran ) when the data is ordinal (Metibemu, 2017). In dichotomously scored 
data, nonlinear factor analysis implemented in normal Ogive harmonic robust 
moment (NOHARM), parallel analysis based on tetrachoric correlation matrix 
(implemented in Vista-Paran), full information item factor analysis 
(implemented in EQSIRT, MIRT R package, and TESTFACT), bootstrap 
modified parallel analysis test (implemented in Itm R package), and stout 
essential dimensionality test (implemented in DIMPACK package) can be used 
(Ackerman, 2010; Finch & Monahan, 2008; Finch & French, 2015; Reckase, 2009). 
The next IRT assumption is local item independence. 

4.1.2 Local item independence 
Local item independence means that the chance of an examinee getting an item 
right is not affected by how they answered other items on the test. The fact that 
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students perform independently on different items does not mean they do not 
correlate; their abilities determine their performance. An examinee's 
probabilities are associated with a set of items related to the probability of a 
response pattern on that set of items. An ability is constant at a particular 
measurement time when it influences responses to a set of items. Therefore, the 
relationship between the two items should be as close as possible to zero. The 
responses may, therefore, be influenced by factors other than what the 
instrument was designed to measure. Given an individual's score on the latent 
trait, the observed items should be independent of each other (Debelak & Koller, 
2020; Song et al., 2019). Independent means are statistically independent. 
Statistically, independent items exhibit their qualities and consider examinees' 
abilities to unfold their characteristic functions about them (Behavior et al., 2012; 
Yen, 2006).   

Several approaches assess whether local item independence is valid (Debelak & 
Koller, 2020; Kim et al., 2011). These methods include the likelihood ratio G2, the 
power-divergence (PD) statistic, the Q3 statistic, Fisher’s r-to-z transformed Q3, 
the Wald test, the likelihood ratio test in logistic regression (LR G2),  the absolute 
value of mutual information difference (Tsai & Hsu, 2005), the mutual 
information difference (MID), the modification index (MI) in structural equation 
modelling (SEM), and the use of the residual correlation from the factor analysis 
(FA). Among the methods, only the likelihood ratio G2 method is implemented 
in a popular IRT computer program such as item response theory-Patience 
response outcomes (IRTPRO). For Chen and Thissen (1997); Tang et al. (2020) 
proposed that the local dependency (LD) χ2 statistic be computed by comparing 
the observed and expected frequencies in each of the two-way cross-tabulations 
between response to each item and each of the other items. Standardised χ2 

values (roughly Z-scores) become large when a pair of items indicate local 
dependency (Chen & Thissen, 1997). Additionally, an LD number greater than 
10 signals local dependence (Adewale et al., 2017; Gay et al., 2011). The study 
(Yen, 1993) suggested Yen's Q-3 statistic as an effective measure for assessing 
local independence; after controlling for person location estimates, the Q3 
statistic is the correlation of residuals between two items. The next IRT 
assumption is monotonicity. 

4.1.3 Monotonicity 
A normal ogive is the item response function (IRF). Item response curves have a 
mean of 0 and a standard deviation of 1. Item response functions are also known 
as item characteristics curves. Items characteristic curves (ICC) relate the 
probability of success on items to the ability measured by the item. In Birnbaum 
(1968); Lord (2012), ICC is invariant across groups of test takers, resulting in the 
invariance of item parameters that produce the item characteristic curve. This 
aspect is a prominent distinguishing feature of IRT compared to CTT. 

The study of Hambleton and Swaminathan (1985) argues that invariance of item 
characteristics and ability parameters means that characteristics of an item do 
not depend on the abilities of examinees, just as characteristics of examinees do 
not depend on test items.  ICC represents non-linear regressions between item 
score and latent trait. Because the variable and probability are unbounded, the 
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relationship will be nonlinear.  It shows the probability of answering a question 
correctly as a function of ability. No matter the distribution of examinees, the 
probability is constant. In this case, the ICC will take the shape of a normal ogive 
since the probability remains the same no matter how many other examinees are 
nearby. The ICC has three sections: the lower asymptote, the upper asymptote, 
and the middle part. An ICC might require several parameters depending on the 
logistic model, as shown in Figure 1. 

 

                                             Figure 1:  ICC showing parameters 

Source: (Ojerinde & Ifewulu, 2012) 

ICC curves are characterised by difficulty and discrimination. The b parameter 
represents item difficulty as measured on a particular axis whose values range 
from -∞ to ∞; traditionally, the values are -3 to +3 when θ has a mean of 0 and a 
standard deviation of 1. Nevertheless, examinee ability over ±3 isn't common. 
Item difficulty value is high when the items are hard to answer. Low-ability 
examinees are less likely to get the correct answer. Easy items are those with low 
difficulty. Candidates with lower ability values are the potential to answer test 
items correctly. As for discrimination, that is also called "a" parameter. This 
information relates to whether an item may discriminate between examinees 
with abilities below and above the item location. The discriminating index 
parameter is calculated by tangentially connecting the curve to the difficulty 
level (b) parameter (Baker, 2001; Baker & Kim, 2017). A discriminating index 
parameter ranges from -∞ to ∞, with a typical value of ≤ 2.0. Hence, the steeper 
the curve is, the more discriminative the item is. (Baker, 2001; Bichi et al., 2019; 
Clark & Watson, 2019; Pliakos et al., 2019) indicates that low 'a' values are not 
useful for discriminating between ability levels. IRT's third parameter is 
guessing, called the 'c' parameter. Examinees of low ability respond correctly to 
an item when this parameter is lower than the asymptote parameter. When the 
three-parameter model is used, the parameter ‘c’ has the theoretical range of 0 ≤ 
c ≥ 1.0, however, values above 0.35 are considered unacceptable (Ayanwale, 
2019). Therefore, θ ≤ c ≤ 0.35 is usually used. 
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4.2 Item response theory and its model 
IRT items can be scored dichotomous or polytomous. Four models are usually 
used for dichotomous items. They are classified into one, two, three, and four-
parameter logistic models (Cai et al., 2016; Cappelleri et al., 2014). However, the 
three most frequently used parameters are difficulty (b), discrimination (a), and 
guessing (c). Before each model can be used, it must meet all the necessary 
assumptions. The simplest of the three models, the one-parameter logistic 
model, is also called the Rasch model (Crocker & Algina, 1986; Hambleton & 
Swaminathan, 1985; Nataranjan, 2009). A logistic function between an 
examinee's ability (θ) and the difficulty of the question (b) is assumed to 
determine the chance that a correct answer will be provided. This is illustrated 
below. 
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Furthermore, the two-parameter logistic model is a dichotomous IRT, in which 
the shape of the item response function is governed by two parameters, 
discrimination (a) and difficulty (b). The item response function increases 
monotonically when 'a' is positive or negative. However, as 'a' increases, the 
slope steepens. Positive item response functions are located with the larger value 
of 'b.' Examinees with the ability (θ) have the following likelihood of answering 
test items correctly. This is illustrated below. 
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 A parameter “c” calculates a lower asymptote parameter of the three-parameter 
logistic model, especially useful for multiple-choice and true-false tests. As c 
increases, the lower limit of the item response function also increases. The 
expression is as follows: 

)10(
exp1

1
)1()

,,
(

)(


+
−+=

−−
CCC

cba
P

ba 


……………Eqn. 4 

Fourth parameter ‘d’ logistic models are dichotomous IRT models in which an 
upper asymptote parameter is added to the three-parameter model. As ‘d’ 
increases, the upper limit of the item response function (IRF) increases. Even 
with extreme levels of a trait, some items are so difficult that students cannot 
answer them all. The item's upper asymptote doesn't equal 1. The model fit will 
be improved by including a lower and an upper bound for the item response 
(Reise & Waller, 2009). A common use is to assess disorders that lead to 
extremely rare behavior. Hence, it is possible to expect that adding parameters 
will lead to an increasingly complex and well-fitting model. A mathematical 
expression for the model is: 
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Its advantage over CTT is that only adequately scored IRT can detect the 
significant differences between individuals whose scores are slightly different. 
When trait scores are incredibly high or low, they are out of the normal range. 
The IRT method solves this problem. Reise and Waller (2009) stipulate that items 
should be "difficult" enough for the levels of the trait in question. As a result, the 
four logistic parameter model, which incorporates time and slowness time 
responses, has yet to be fully integrated into conventional IRT models (Zhang, 
2012). 

4.3 Item response theory item analysis 
The process of item analysis consists of assessing an item's quality in a test and 
the test as a whole based on the test results (Sim & Rasiah, 2006). In this way, 
items can be improved for future use, while those that are inadequate can be 
discarded. IRT analyses a scale at the item level by calculating item difficulty, 
discrimination, and test information function. Further, it computes the standard 
error (SE) for parameters "a" and "b" for each item and estimates the relationship 
between items and the constructs. Items may be positioned around theta (θ) or 
distributed uniformly from - ∞ to + ∞, depending on the purpose of the analysis. 
The location parameters of the instrument should be as close to the cut-off as 
possible when used to identify examinees for remedial measures or grouping 
them. For IRT models to be fully effective, item parameters must be calibrated 
with the right model. 

The IRT model that best fits the data determines the model for item calibration 
of a test under development. An analysis of model-data fit is the only way to 
determine the right choice of item response theory models, as proposed by (Lee 
& Ansley, 2007).  The model-data fit of item response theory models is critical 
when applied to real data. Estimated parameters may be compromised when a 
model does not fit the data (Bovaird & Embretson, 2012; Cai et al., 2016). To 
validate item response theory applications, fit tests of models need to be 
performed (González & Wiberg, 2017). According to Embretson and Reise 
(2013), checking item fit involves some issues. Item fit analyses can be used to 
identify a test model that retains the integrity of observed data, to identify 
extraneous dimensions that affect test item responses, and as a method of 
identifying faulty item construction, that is, incorrect keying and item fit, that is, 
those that indicate calibration errors during test development. 

An item that does not fit a specific model is considered a poor fit (Hambleton & 
Jones, 1993). Comparing the observed performance of individual items with the 
predicted performance under the chosen model is a common way to assess 
model-data fit (Lee & Ansley, 2007; Yu et al., 2007). Based on Courville (2005), 
plots of observed and predicted score distributions or the chi-square test may be 
used to compare observed and predicted data. In Embretson and Reise (2013), 
examinees are first ranked according to their estimates (θ), then grouped into 
fixed or subjective categories. According to an item response function or item 
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characteristics curve, the proportion of examinees that answer an item correctly 
is calculated. A literature review on chi-square research shows that no chi-
square fit index is preferred over another (Hambleton & Swaminathan, 1985). In 
Reise (1990),  expressed chi-square as follows: 
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'i' is the item, 'j' describes the interval based on examinees' ability estimates, 'H' 
represents the number of examinees within any interval, 'Nj' indicates the 
number of examinees with (θ) estimates within a given interval, and 'Eij, 'the 
expected proportion of keyed responses for intervals using an item response 
function evaluated at the median (θ) estimate within an interval. Chi-squares 
with high estimates diagnose items that do not fit the model, that is, those items 
performing differently than expected. 

The likelihood ratio (G2) is a chi-square statistic representing two tests of overall 
fit when items on a test are ten or less and twenty or more. (Rupp, 2003; 
Tuerlinckx et al., 2004) calculate the chi-square (χ2) statistic as follows: 
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Where 2n represents the number of possible patterns for each ‘n’ binary item 
scoring, ‘ri’ is the observed frequency of pattern 'i', 'N' is the number of 
respondents, and ‘Pi’ is the estimated marginal probability. The number of 
degrees of freedom is 2n-Kn-1, where K is the number of parameters in the 
response model. Thus, if 'G2'>a critical value, the null hypothesis is rejected, and 
the ICC is expected to fit the item (Rupp, 2003). 

4.4 Item and test information function 
Test development and evaluation benefit from item information functions when 
lCC are fitted to test data. The corresponding item statistics and item 
information functions (IIF) will be incorrect if the ICCs do not fit the data well. It 
may be hard to use an item in all tests even when the fit is good if the parameter 
is low and the parameter is high. Additionally, an item may provide 
considerable information at one end of the ability continuum but be of no use on 
another end of the continuum. The information functions indicate how each item 
and the test estimates ability over the scale. IRT considers the test information 
function as a reliability coefficient since the variance measures the precision of 
measurement (Alagoz, 2005). Asymptotic distribution of the maximum 

likelihood estimator θˆ has mean θ and variance
( )


I

12 = , where ( )I is the 

amount of information. The ability estimate will be less precise, and the 
available information about an examinee's ability will be less when the variance 
of an estimator is large. The information function for the test with n items is 
defined as:  
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Therefore, CTT's reliability coefficient and item reliability correspond to the test 
and IIF (Alagoz, 2005). An important element of IRT is the test information 
function (TIF). It shows how well the test estimates ability across a broad range 
of scores. A test is used to assess a person's ability so that the amount of 
information obtained from the test at any level can also be obtained (Birnbaum, 
1968). In a test, there are items; therefore, the test information consists of the item 
information at a given level of ability. Each item contains a specific amount of 
information. The mathematical definition of item information may differ 
depending on the item characteristic curve model employed. The test 
information function therefore is: 

           𝐼(𝜃)   =  ∑ 𝐼𝑖 (𝜃)𝑁
𝑖=1  ………………………………………….Eqn.9 

𝐼(𝜃) is the amount of information in a test at any ability level 𝜃, 𝐼𝑖 (𝜃) is the 
amount of information in each item, and N is the number of items in the test. 
Specifically, the TIF predicts the degree of accuracy at which we can measure 
any value of latent ability. Generally, the level of information in a test will be 
higher than that in a single-item test (Baker, 2001). When several items are 
included in a test, the greater the amount of information is revealed. More 
extended tests better measure test takers' abilities than shorter tests. A test 
information function may be used to balance multiple alternate test forms for the 
same exam. TIF values should be the same across all alternate forms (Song et al., 
2019). 

5. Conclusion and Recommendations 
The present article discusses CTT and IRT in ECOL's test development and item 
analysis. Educational assessment includes the performance of tests; their results 
are used to inform various educational decisions. Tests are therefore widely 
regarded as an important part of education. Testing is a method of evaluating a 
candidate's ability in a previously defined knowledge or skill domain. To better 
understand the relationship between the observed (or actual) score on an 
examination and the unobserved proficiency in the domain, we need a test 
theory model. CTT and IRT are commonly used models. The CTT calculates 
statistics such as correlations among items, covariance’s, difficulties, 
discrimination power, reliability coefficients, variance/standard deviation of the 
sample, measurement errors, etc., to improve the reliability and validity of 
measurement tools. The theory deals with important measurement problems 
from a constant perspective. Due to several weaknesses of CTT, the need for 
another test theory emerged. These include item and test statistics that differed 
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across tests and groups; a single error estimate was produced for individuals of 
all skills levels, and the weakness in test equating. A significant innovation in 
educational assessment and psychometrics has been the development of IRT.  
Models of IRT have been used extensively in test development and assessment 
over the past several decades, attesting to their importance. The IRT models 
analyse items, assemble test forms, and equate. Despite being helpful in many 
situations, IRT models use strong assumptions and are mathematically more 
complex than CTT models used in ECOL. In conclusion, the study strongly 
recommends that ECOL shift its test development and item analysis modus 
operandi from CTT to modern test theory, which has numerous benefits. 
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