Designing a Classification Toolkit for Mathematically-Deficient $4^{\text {th }}$ Grade Students: A Case Study in Vietnam

Doctor's degree student Tuyen Thanh Thi Nguyen
Hung Vuong University, Phu Tho, Vietnam
Doctor's degree student Tram Phuong Thuy Nguyen
Duc Trong High School, Lam Dong, Vietnam
Associate Professor, Dr Trung Tran
Ethnic Cadre University, Ha Noi, Vietnam
Associate Professor, Dr Lai Thai Dao
The Vietnam Institute of Educational Sciences, Hanoi, Vietnam

Abstract

The theory of educating slow-learning students has pointed out that, the first and most important step in this study is to identify and categorize the slow learners. In order for this study to be carried out effectively, a feasible and scientific procedure which complies the teachers' ability with educational environment in different schools is highly required (Brennan, W. Kyran (1974)), (Reddy and Ramar (2006)), (Vu, Q. Chung, Dao, T. Lai, Do, T. Dat, Tran, N. Lan, Nguyen, Q. Hung and Le, N. Son (2005)). The following study will examine some studies of categorizing slow-learning students, as well as suggesting a method of categorizing $4^{\text {th }}$-grade students who perform poorly in mathematics via the assessing mathematical ability toolkit. To develop the assessing mathematical ability toolkit to categorize slow-learning $4^{\text {th }}$ grade students, we have focused on some of the following tasks: (i) Determining the criteria for creating sets of exercises, (ii) Assessing the reliability and validity of the toolkit, and (iii) Choosing the conditions for categorizing slow-learning students.

Keywords: categorizing, slow-learning students, mathematics, $4^{\text {th }}$ grade.

1. Introduction

There are various methods of categorizing slow-learning students: Budanui, A. A (1960) believes that low performance in students is conventional in specific circumstances so he divided slow-learning into two types: Absolute slow-
learning and relative slow-learning. Inkovlev, N. M (1962) and other Polish educationists share the same notion. They believe this phenomenon is demonstrated in two different ways: Evidently and potentially. In terms of internal and external factors that motivate the students, Kalnukova, Z (1962), I divided slow-learning students into two groups: those who are academically abandoned and those who are academically deficient. In terms of the duration, extent and level of low performance, Genmont, A. M (1959) suggested 3 groups of underachievers: (1) Completely and seriously deficient in every subject over a long period, (2) Relatively and stably deficient in parts of the curriculum of some complex subjects (Mathematics, Foreign Languages), (3) Temporarily deficient in a random subject, but can be easily resolved (МЕНЧИНСКАЯ Н. А. КАЛМЬLКОВАЗ. И. (1964)).
In terms of personality structure, there is another categorization. Some scientists such as Babanskij, Iu. K (1964); Menchinskaja, N. A (1964), Kazanskij, N. G (1964) (МЕНЧИНСКАЯ Н. А. КАЛМЬЦКОВАЗ. И. (1964)) divided slowlearners based on the premise of combining two basic personality complexes: the first complex is characterized by features of logical thinking (relating to academic levels), the second one is characterized by personal trends including learning attitude and internal point of view. Thus, there are 3 different 2combinations between the aforementioned complexes and 3 groups of slowlearning students: (1) Poor logical thinking coupled with positive learning attitude and strong point of view, (2) Good logical thinking coupled with negative learning attitude and partial or no point of view, (3) Poor logical thinking coupled with partial to or point of view.
In terms of the students' cognitive ability, World Health Organization (WHO) divides slow-learners into 3 groups based on their IQ scores: (1) The educable mentally retarded (EMR) who have IQ ranging from 50-80, (2) the trainable mentally retarded (TMR) who have IQ ranging from $20-50$, (3) the severely and profoundly handicapped (SPH) who have IQ ranging from 8-20 (Brennan, W. K. (1974)), (Curtis, K., \& Shaver, J.P. (1980)).

In terms of the mechanism for slow development in functional areas of the brain, Tran, T. T, based on results from Luria 90 test, clinical evaluations, electroencephalogram (EEG) diagnoses, has suggested 3 groups: (1) Slow development in the Frontal, Parietal and Temporal lobes in both cerebral hemispheres, (2) slow development in the Occipital lobes in both cerebral hemispheres, (3) slow development in the left Temporal lobe (Tran, T. T. (1997)). Based on indications of cognitive limitations, psychologists have suggested the following categories: (1) Those who have poor memory, (2) those who have attention deficit disorder, (3) those who have intellectual disabilities, (4) those who have linguistic disabilities. For mathematically-deficient students in primary school, we can categorize them on the basis of the curriculum contents: slow learners in arithmetic, slow learners in geometry, slow learners in problemsolving, slow learners in statistics. In terms of levels of knowledge acquisition (Reddy and Ramar (2006)),there are: (1) slow learners who are lacking mathematical concepts or unable to memorize the principles, theorems or formulae, (2) slow learners who do not understand or remember the nature of the problems, (3) slow learners who are unable to apply mathematical knowledge to solving problems (Vu, Q. C., Dao, T. L., Do, T. D., Tran, N. L,

Nguyen, H. Q., \& Le, N. S. (2005)).
Therefore, categorizing slow-learners is crucial and has been an interesting subject of study for many authors. These studies, however, only approached this matter from diagnostic, neuropsychological and educational-psychological aspects. With these categorizations, teachers will come up against a great many difficulties in identifying slow learners via traditional methods. In reality, in order to effectively help low-performing students, teachers need a categorizing toolkit in the form of exercise sets so as to understand the students' level of mathematical knowledge acquisition, they can pinpoint the students' difficulties, mistakes and gaps in knowledge (Nguyen, V. C., Le, T. N., \& Phan, T. Q., (2002)). Those are the points on which we have focused and aimed to resolve in our research. In order to develop such a toolkit, we have carried out the following tasks: (i) Determining the criteria for creating sets of exercises, (ii) Assessing the reliability and validity of the toolkit, and (iii) Choosing the conditions for categorizing slow-learning students. Here we have chosen $4^{\text {th }}$ grade students to be our research subjects and the aim of this toolkit is to categorize mathematically-deficient $4^{\text {th }}$ grade students. The statistics used in this research are from some primary schools in Thai Nguyen and Phu Tho provinces in Vietnam.

2. Content

2.1. The criteria for developing the toolkit

Based on the mandatory standards of $4^{\text {th }}$ grade mathematics and the minimum standards of elementary mathematics (Do, D. H., Do, T. D., Dao, T. L., \& Do, T. H (2015)), we have built an assessing toolkit in the form of an exercise system aiming to test math proficiency of $4^{\text {thg }}$ grade students, through which we can identify and categorize mathematically-deficient $4^{\text {th }}$ grade students. In order to meet the requirements for elementary mathematics in general, the students must fully understand the following areas and these can also be regarded as the criteria for evaluating math proficiency of $4^{\text {th }}$ grade students:
1- Recognizing and understanding the meaning of numbers: Capable of counting, analyzing the formation and comparing between different numbers
2- Arranging the arithmetic algorithm and calculating: Capable of computing four basic arithmetic operations
3- Geometry: Capable of identifying basic shapes, properties of shapes. Know the formulae for calculating the circumference, diameter and area of shapes
4- Units of measurement: Understand and memorize units of measurement table, capable of converting between metric units
5- Problem solving: Capable of solving practical mathematical problems
Therefore, the exercise system must consist of all 5 above-mentioned areas. Meanwhile, in each area, the system must be able to assess which stage in the development process the contemporary knowledge of the student is at. In other words, which grade is the student's understanding of each mathematical area equivalent to? The system should be also able to identify which problems and shortcomings the children are experiencing in each mathematical area.

2.2. Introduction of the toolkit

From the listed criteria and skill requirements in each mathematical area from $1^{\text {st }}$ grade to $4^{\text {th }}$ grade, we have constructed a toolkit assessing math proficiency of $4^{\text {th }}$ grade students in which the 5 listed areas correspond to 5 domains. In each
domain, the exercises are designed in chronological order starting from the beginning of the knowledge acquisition process up to the contemporary period ($4^{\text {th }}$ grade). The level of the exercises the students manage to complete will reflect their level of knowledge acquisition in terms of scores.
Content 1: Assessing the ability to recognize numbers and the meaning of numbers
Type 1: Read and write numbers: two-digit numbers (1st grade); three-digit numbers ($2^{\text {nd }}$ grade); five-digit numbers ($3^{\text {rd }}$ grade); seven-digit numbers ($4^{\text {th }}$ grade).
Type 2: Compare and arrange numbers: Find the largest number in a sequence of 3digit numbers ($2^{\text {nd }}$ grade); Continue a sequence of 5 -digit numbers ($3^{\text {rd }}$ grade); Identify fractions which are larger than 1 ($4^{\text {th }}$ grade).
The exercise system corresponding "Content 1 " is called "Scale A", which is suggested as below:
A. UNDERSTANDING NUMBERS AND MEANING OF NUMERS

A1. READ AND WRITE NUMBERS

No.	Numericals	Written number	Correct (V)
	10356217	Ten million three hundred and fifty-six thousand two hundred and seventeen	
1		Twenty million four hundred and sixty-three thousand two hundred and six	$1 p t$
2	67246	...	$1 p t$
3	One million two hundred and thirty-four	$1 p t$
4	222	...	$1 p t$
5	Ninety nine	$1 p t$
6	$\frac{5}{7}$		$1 p t$
7	Eighteen twenty-fifths	$1 p t$

Total A1:/7 points
A2. COMPARING AND ARRANGING NUMBERS

No.	Exercise	Correct (
8	Find the largest number among 395; 695; 375	1pt
9	Fill in the blanks: 18 301;18 302;;; 18 306;;	1pt
10	Circle the fractions which are larger than 1: $\frac{5}{7}$ $\frac{3}{2}$ $\frac{12}{2}$ $\frac{13}{11}$ $-;$ \ldots,	1 pt

Total A2:....../3 points
Total Scale A= A1+A2:/10 points
Common mistakes:

Content 2: Assessing the ability to arrange the arithmetic algorithm and calculate

Type 1: Addition: No-carrying addition (1st grade); one-carrying addition (2 ${ }^{\text {nd }}$ grade); 2-carrying addition (3 ${ }^{\text {rd }}$ grade); more-than-2-carrying addition, adding fractions with the same and different denominator ($4^{\text {th }}$ grade)
Type 2: Subtraction: No-carrying subtraction (1st grade); one-carrying subtraction (2 ${ }^{\text {nd }}$ grade); 2-carrying subtraction (3rd grade); more-than-2-carrying subtraction, subtracting fractions with the same and different denominator (44 grade)
Type 3: Multiplication: Multiplication table (2 $2^{\text {nd }}$ grade); one-digit multiplication ($2^{\text {nd }}$ and $3^{\text {rd }}$ grade); 2-digit and 3-digit multiplication, fraction multiplication (3rd and $4^{\text {th }}$ grade)
Type 4: Division: Division table (2 ${ }^{\text {nd }}$ grade); one-digit division (2 $2^{\text {nd }}$ and $3^{\text {rd }}$ grade); 2 -digit and 3 -digit division, fraction division ($3^{\text {rd }}$ and $4^{\text {th }}$ grade)
The exercise system corresponding to "Content 2" is called "Scale B", which is suggested as below:
B. USING THE ARITHMETIC ALGORITHMS TO CALCULATE

B1. ADDTION SKILL

No.	Exercises		Correct (V)
	Calculate	Answer	
11	$23+14$		1pt
12	$239+517$		1pt
13	$356+276$		1pt
14	47865 + 78537		2pts
15	$\frac{3}{5}+\frac{2}{5}$		1pt
16	$\frac{5}{4}+\frac{2}{3}$		1pt

Total B1:/ 7 points
B2. SUBTRACTION SKILL

No.	Exercises		Correct (V)
	Answer		1 pt
17	$56-13$		1 pt
18	$451-23$		1 pt
19	$534-265$		2 pts
20	$123456-10678$		1 pt
21			

$\frac{5}{7}-\frac{2}{7}$ 22 $\frac{5}{3}-\frac{2}{4}$ 1 pt Total B2:/7 points
B3. MULTIPLICATION SKILL

No.	Calculate		Correct
	Answer		
23	$3 \times 6=$ $4 \times 8=$		2 pts
24	$12 \times 4=$	2 pts	
25	$23 \times 12=$		2 pts
26	$1456 \times 123=$	2 pts	
27	$\frac{5}{3} \times \frac{2}{7}$		2 pts

Total B3:/ 10 points
B4. DIVISION SKILL

No.	Exercises		Correct
	Calculate	Answer	
28	$\begin{aligned} & 6: 2= \\ & 8: 4= \end{aligned}$		2pts
29	$84: 4=$		2pts
30	$276: 12=$		2pts
31	4428 : 123		2pts
32	$\frac{2}{3}: \frac{4}{5}$		2pts

Total B4:/10 points
Total Scale B = B1+B2+B3+B4=........../34 points
Common mistakes: \qquad

Content 3: Assessing geometry skills

Type 1: Match the shapes with the correct names and colors (1st grade)
Type 2: Calculate the diameter of a triangle (2 $2^{\text {nd }}$ grade)
Type 3: Calculate the area of a rectangle (3rd grade)
Type 4: Draw parallel and perpendicular lines, identify different types of angles (4th grade)
The exercise system corresponding to "Content 3 " is called "Scale C", which is suggested as below:

C. GEOMETRY

Total: \qquad / 12 points

Common mistakes: \qquad

Content 4: Assessing understanding of units of measurement

Types of metric units: weight, time, length, area. In each type we will test understanding of the metric unit chart and unit conversion.

The exercise system corresponding "Content 4" is called "Scale D", which is suggested as below:

D. UNITS OF MEASUREMENT

D1. UNITS OF MASS

No.	Exercises	Correct
39	1 centitonne $=\ldots \ldots \ldots \ldots . . \mathrm{kg}$	1pt
40	1 quintal =centitonne	1pt
41	1 quintal $=\ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{kg}$	1pt
42	1 tonne $=\ldots \ldots \ldots \ldots \ldots .$. quintal	1 pt
43	1 tonne $=\ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{kg}$	1 pt
44	1 centitonne $7 \mathrm{~kg}=\ldots \ldots \ldots \ldots \ldots . . \mathrm{kg}$	2pts
45	4 quintal $60 \mathrm{~kg}=\ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{kg}$	2pts

Total D1:/9 points.

D2. UNITS OF TIME

No.	Exercises	Correct
46	1 hour $=\ldots \ldots \ldots \ldots \ldots \ldots$. minutes	1pt
47	1 minute $=\ldots \ldots \ldots \ldots \ldots \ldots$. seconds	1 pt
48	1 century =years	1pt
49	1 minute 8 seconds =seconds	2pts
50		2 pts

D3. UNITS OF LENGTH

No.	Exercises	Correct (\mathbb{V})
51	$1 \mathrm{~km}=\ldots \ldots \ldots \ldots . \mathrm{m}$	1 pt
52	$1 \mathrm{~m}=\ldots \ldots \ldots \ldots \ldots \mathrm{dm}$	1 pt
53	$1 \mathrm{dm}=\ldots \ldots \ldots \ldots \ldots . \mathrm{cm}$	1 pt
54	$1 \mathrm{~cm}=\ldots \ldots . \mathrm{mm}$	1 pt
55	$1 \mathrm{~m}=\ldots \ldots \ldots . \mathrm{cm}$	1 pt
56	$1 \mathrm{~m}=\ldots \ldots \ldots \ldots \mathrm{mm}$	1 pt
57	$2 \mathrm{~km} 35 \mathrm{~m}=\ldots \ldots \ldots . \mathrm{m}$	2 pts
58	$3 \mathrm{~m} 2 \mathrm{~cm}=\ldots \ldots \ldots . . \mathrm{cm}$	2 pts

Total D3:/10 points.

D4. UNITS OF AREA

No.	Exercises	Correct (\mathbb{V})
59	$1 \mathrm{~m}^{2}=\ldots \ldots \ldots \ldots \ldots . \mathrm{dm}^{2}$	1 pt
60	$1 \mathrm{dm}^{2}=\ldots \ldots \ldots \ldots \ldots . \mathrm{cm}^{2}$	1 pt
61	$1 \mathrm{~m}^{2}=\ldots \ldots \ldots \ldots \ldots . \mathrm{cm}^{2}$	2 pts
62	$1 \mathrm{~km}^{2}=\ldots \ldots \ldots \ldots \ldots . \mathrm{m}^{2}$	2 pts
63	$10 \mathrm{dm}^{2} 2 \mathrm{~cm}^{2}=\ldots \ldots \ldots \ldots \ldots . . \mathrm{cm}^{2}$	2 pts
64	$9900 \mathrm{~cm}^{2}=\ldots \ldots \ldots . . \mathrm{dm}^{2}$	2 pts

Total D4:/10 points.
Total Scale D= D1+D2+D3+D4 = \qquad . 36 points

Common mistakes: \qquad

Content 5: Assessing the ability to solve practical problems

Type 1: 1-operation problems about addition (1st grade)
© 2015 The authors and IJLTER.ORG. All rights reserved.

Type 2: 1-operation problems about more than/less than (2nd grade)

Type 3: 2-operation problems (3rd grade)
Type 4: 2-to-3-operation problems (4th grade)
The exercise system corresponding to "Content 5 " is called "Scale E", which is suggested as below:

E. PROBLEM SOLVING

No.	Exercises		Correct (V)
	Problem	Answer	
65	Exercise 1: Minh has 12 pieces of candy; Mai has 23 pieces of candy. How many pieces of candy do Minh and Mai have?	2pts
66	Exercise 2: The small jar holds 10 litters of fish sauce; the big jar holds 5 litters more than the small jar. How many litters of fish sauce does the big jar hold?		2pts
67	Exercise 3: 42 identical cups are placed into 7 boxes. If there are 4572 cups, how many boxes are they placed into?		2pts
68	Exercise 4: There are 45 students in a class, $\frac{3}{4}$ of whom are girls. How many boys and girls are there in the class?	\square	2pts

Total: \qquad 8 points
Common mistakes:

2.3. Evaluating the reliability and validity of the toolkit

After being designed, constructed, and consulted by professionals, the toolkit has been completed, comprised of a system of 68 exercises with 5 domains. The points are given in accordance with the scale of each domain with the total sum of 100 . We have conducted a small-scale test to determine the reliability and
validity of the scales before conducting a large-scale test. To test the reliability of the toolkit, we have applied the Test-Retest Method to twenty $4^{\text {th }}$ grade students from Tu Xa 2 elementary school in late April, 2015. The students' results from the two tests at a one-week interval have been summed up in the following table:

Table 1: The results of 20 students in two tests

Student (i)	First test score $x_{i 1}$	Second test score $x_{i 2}$	Deviation	Mean	Variance
1	84	92	-8	88	32
2	100	100	0	100	0
3	88	80	8	84	32
4	56	62	-6	59	18
5	72	76	-4	74	8
6	30	28	2	29	2
7	86	80	6	83	18
8	68	74	-6	71	18
9	88	80	8	84	32
10	100	98	2	99	2
11	90	98	-8	94	32
12	86	82	4	84	8
13	48	46	2	47	2
14	74	76	-2	75	2
15	72	70	2	71	2
16	86	88	-2	87	2
17	54	48	6	51	18
18	100	88	12	94	72

19	56	64	-8	60	32
20	46	42	4	44	8
Mean	74.2	73.6	$\bar{x}_{i}=\mathbf{0 . 6}$	$\bar{x}=\mathbf{7 3 . 9}$	

The coefficient of reliability of the toolkit can be calculated using the following formula
$R=\frac{S_{T}^{2}}{S_{T}^{2}+S_{E}^{2}}$ in which: R is the coefficient of reliability
S_{E}^{2} is the deviation in the test scores $S_{E}^{2}=\frac{S_{1}^{2}+S_{2}^{2}+\ldots+S_{N}^{2}}{N}, S_{i}^{2}$ being the variance of student i, N being the number of participants.
S_{T}^{2} is the actual score reflecting the student's ability. $S_{T}^{2}=\frac{B M S-W M S}{k}$ (with $B M S=\frac{1}{N-1} \sum_{i=1}^{N} 2\left(\overline{x_{i}}-\bar{x}\right)^{2}$ and $W M S=\frac{1}{N} \sum_{i=1}^{N} S_{i}^{2}, \overline{x_{i}}$ being the mean score of student i in the two tests; \bar{x} being the mean of the test scores; k being the number of tests conducted on one student, in this case $k=2$). The results are $S_{T}^{2}=354.1 ; S_{E}^{2}=17$, and the coefficient of reliability of the toolkit is $R=0.95$.
These results show that the stability of the classification toolkit for mathematically-deficient $4^{\text {th }}$ grade students is rather high. (Nguyen, V. T (2015)). The validity of the toolkit has been taken into account with two values: internal validity and external validity. The internal validity answers the question: Is the toolkit well-structured? Does it conform to the whole scale? This index is assessed using the coefficient of correlation between different domains, as well as between the domains and the whole scale. The toolkit will have a high internal validity (construct validity) if the smaller scales match up with one another and with the whole scale. The following table illustrates the correlation between the 5 domains, using figures from the test results of the abovementioned 20 students in the first test:

Table 2: Coefficient of correlation between domains

Coefficient of correlation	Domain \mathbf{A}	Domain B	Domain \mathbf{C}	Domain \mathbf{D}	Domain \mathbf{E}	The whole scale
Domain A		0.933	0.788	0.814	0.780	0.912
Domain B			0.886	0.887	0.854	0.982
Domain C				0.791	0.762	0.905
Domain D					0.814	0.948
Domain E						0.882
The whole scale						

The table shows that the coefficient of correlation between each domain and the coefficient of correlation between the domains and the whole scale both have positive value (from 0.762 to 0.982), which means that there is a direct correlation between them. On the other hand, these figures reflect the structural unity of elementary math in Vietnam.

3. Experimenting the classification toolkit for mathematically-deficient $4^{\text {th }}$ grade students

Having confirmed the reliability and validity of the toolkit, we conducted an experiment to identify and classify slow-learning students in 156 students from three schools: Tu Xa 2 Elementary school (65 students), Cao Mai Elementary school (56 students) and Linh Thong Elementary school (36 students). These schools are located in two provinces, Thai Nguyen and Phu Tho, Vietnam. The results are depicted in the following table, using SPSS program

Table 3: Collected figures

N	Valid	156
	Missing	0
Mean	82.29	
Median	86.00	
Mode	88	
Std. Deviation	14.562	
Minimum	24	
Maximum	100	

Table 4: Frequency of test scores

Valid	Frequency	Percent	Valid	Frequency	Percent
$\mathbf{2 8}$	1	0.6%	$\mathbf{8 1}$	1	0.6%
$\mathbf{2 9}$	1	0.6%	$\mathbf{8 2}$	7	4.5%
$\mathbf{3 0}$	1	0.6%	$\mathbf{8 3}$	5	3.2%
$\mathbf{3 1}$	1	0.6%	$\mathbf{8 4}$	10	6.4%
$\mathbf{3 2}$	2	1.3%	$\mathbf{8 5}$	10	6.4%
$\mathbf{4 6}$	1	0.6%	$\mathbf{8 6}$	6	3.8%
$\mathbf{5 7}$	1	0.6%	$\mathbf{8 7}$	10	6.4%
$\mathbf{5 8}$	2	1.3%	$\mathbf{8 8}$	12	7.7%
$\mathbf{6 0}$	2	1.3%	$\mathbf{8 9}$	7	4.5%
$\mathbf{6 1}$	2	1.3%	$\mathbf{9 0}$	6	3.8%
$\mathbf{6 2}$	1	0.6%	$\mathbf{9 1}$	3	1.9%
$\mathbf{6 3}$	2	1.3%	$\mathbf{9 2}$	7	4.5%
$\mathbf{6 4}$	3	1.9%	$\mathbf{9 3}$	4	2.6%
$\mathbf{7 2}$	1	0.6%	$\mathbf{9 4}$	9	5.8%
$\mathbf{7 4}$	1	0.6%	$\mathbf{9 5}$	4	2.6%
$\mathbf{7 5}$	1	0.6%	$\mathbf{9 6}$	3	1.9%
$\mathbf{7 6}$	7	4.5%	$\mathbf{9 7}$	2	1.3%
$\mathbf{7 7}$	2	1.3%	$\mathbf{9 8}$	2	1.3%

Valid	Frequency	Percent	Valid	Frequency	Percent
$\mathbf{7 8}$	8	5.1%	$\mathbf{9 9}$	2	1.3%
$\mathbf{7 9}$	4	2.6%	$\mathbf{1 0 0}$	2	1.3%

Based on the above table, we have the following graph of distribution of the students' scores:

Graph 1: Distribution of $4^{\text {th }}$ grade students' test scores

The table has reflected the expected characteristics of the toolkit. The overall mean score of the students is over 82.29 out of a maximum of 100 . This can be explained by the expectation that this toolkit is designed to identify students who perform poorly in $4^{\text {th }}$ grade math, with the minimum requirements, so that at least 80% (the calculated figure is 81.8%) of the students can complete most of the exercises. Moreover, the arithmetic domain including: number formation and operation already accounts for $44 / 100$ points of the scale; the remaining smaller scales have a certain minimum difficulty to ensure that it is possible for any regular $4^{\text {th }}$ grade student in their second semester to solve them, and can only be a challenge for slow-learning students.
The table of the score distribution of $4^{\text {th }}$ grade students - Graph 1 has fundamentally conformed to the rules of normal distribution - this is an essential element in identifying slow-learning students in $4^{\text {th }}$ grade. The results in Table 4 shows that the mean score of the students is $\mathrm{M}=82.29$ and the standard deviation is $\mathrm{SD}=14.56$. The specific results of the mean score and standard deviation of the domains are as follows:

Table 5: The mean score and standard deviation of each domain

Domains	Total score	Domain A	Domain B	Domain C	Domain \mathbf{D}	Domain E
Mean score (M)	$\mathrm{M}_{\mathrm{s}}=82.29$	$\mathrm{M}_{\mathrm{A}}=9.69$	$\mathrm{M}_{\mathrm{B}}=29.29$	$\mathrm{M}_{\mathrm{C}}=10.14$	$\mathrm{M}_{\mathrm{D}}=26.47$	$\mathrm{M}_{\mathrm{E}}=6.69$
Standard deviation (SD)	$\mathrm{SD}_{\mathrm{S}}=14.56$	$\mathrm{SD}_{\mathrm{A}}=1.11$	$\mathrm{SD}_{\mathrm{B}}=6.01$	$\mathrm{SD}_{\mathrm{C}}=2.57$	$\mathrm{SD}_{\mathrm{D}}=4.34$	$\mathrm{SD}_{\mathrm{M}}=1.60$

Therefore, if the total test score of a student is T, we can divide the level of mathematical ability of $4^{\text {th }}$ grade students based on the distribution of the mean score M_{s} and standard deviation SD_{s} as follow:

Table 6: Categorization of $4^{\text {th }}$ grade students' mathematical ability

Categories	Slow learners			Non-slow learners	
	Type 1: Non- definite knowledge in all areas	Type 2: Non-definite knowledge in some areas	Basic knowledge of mathematics, meeting requirements in the standard of 4th grade math	Firm basis in math	
	$T<M_{S}-2 S \mathrm{D}_{\mathrm{S}}$	$M_{S}-2 \mathrm{SD}_{\mathrm{S}} \leq T<M_{S}-S \mathrm{D}_{\mathrm{s}}$	$M_{s}-S \mathrm{D}_{\mathrm{s}} \leq T \leq M_{s}+S \mathrm{SI}$	$T>M_{s}+S \mathrm{II}$	
Corresponding score	$\mathrm{T}<53,17$	$53,17 \leq T<67,73$	$67,73 \leq T<96,85$	$T \geq 96,85$	

Based on the above categorization, Cao Mai elementary school does not have any type 1 slow-learning students. However, if we consider more criteria of domains A and B, and call T_{A}, T_{B} the total scores which students gained from domains A and B, with the same categorizing way as above, which means

Table 7: Categorizing slow learners according to three criteria

Criteria		Slow learners Type 1	Slow learners Type 2
Total score of the survey	Formula	$T<M_{S}-2 S \mathrm{D}_{\mathrm{S}}$	$M_{S}-2 S \mathrm{D}_{\mathrm{S}} \leq T<M_{S}-S \mathrm{D}_{\mathrm{S}}$
	Correspondent score	$\mathrm{T}<53,17$	$53,17 \leq T<67,73$
Score of domain A	Formula	$T_{A}<M_{A}-2 S \mathrm{D}_{\mathrm{A}}$	$M_{A}-2 S \mathrm{D}_{\mathrm{A}} \leq T_{A}<M_{A}-S \mathrm{D}_{\mathrm{A}}$
	Correspondent	$\mathrm{T}_{\mathrm{A}}<7,47$	$7,47 \leq T_{A}<8,58$

	score		
Score of domain B	Formula	$T_{B}<M_{B}-2 S \mathrm{D}_{\mathrm{B}}$	$M_{B}-2 S \mathrm{D}_{\mathrm{B}} \leq T_{B}<M_{B}-S \mathrm{D}_{\mathrm{B}}$
	Correspondent score	$\mathrm{T}_{\mathrm{B}}<17,27$	$17,27 \leq T_{B}<23,28$

So the rate of slow learners between schools is distributed as follows:

Table 8: Proportion of different student groups in chosen schools

	-Slow learners Type 1 aSlow learners Type 2 \square Non-slow learners	
Cao Mai primary school	Tu Xa 2 primary school	Linh Thong primary school

And the rate (Slow learners Type 1: Slow learners Type 2: Non-slow learners) in the whole is $(4 \%: 8 \%: 88 \%)$. This result also corresponds to Newman's error analysis (1977) (Newman, M. A, (1977). Therefore, use the above system of exercises and consider domains using the three criteria: 1 . The total score of the survey, 2. Score of domain A, 3. Score of domain A with the determination according to the formula of Table 7, we can determine and categorize students bad at math in 4th grade Mathematics Subject in Vietnam more properly.

Example:

The following table is the test results of a student (Ngo, D. Bang) from Tu Xa 2 elementary school - Lam Thao district - Phu Tho province. This student has the total test score $T=28 / 100$ points, Domain $A=4 / 10$ points, Domain $B=8 / 34$ points. According to the above criteria, this student is a Type 1 slow learner, whose common mistakes have been depicted as follow

Table 9: Analyzing the mistakes in a student's test

Item		Maxi mum score	$\begin{gathered} \text { Resu } \\ \text { lt } \end{gathered}$	Common mistakes
A. Recognizing numbers and their meanings	A1 - Reading and writing numbers	7	3	Mistakes due to lack of knowledge of the composition of numbers with more than 3 digits
	A2- Comparing and arranging numbers	3	1	Mistakes due to inability to compare fractions as well as multi-digit numbers
B. Using arithmetic algorithms to calculate	B1-Addition skills	7	4	Mistakes when adding multi-digit numbers with multiple carryings; not remembering the rule of adding fractions with unlike denominators
	B2- Subtraction skills	7	2	Mistakes when subtracting with carryings; not remembering the rule of subtracting fractions with unlike denominators
	B3- Multiplication skills	10	1	Mistakes due to not remembering the multiplication table, not having any multiplication skill
	B4- Division skills	10	1	Mistakes due to not remembering the division table, not having any division skill
C. Geometry		12	4	Mistakes due to not remembering the formula for area, the parallelism and perpendicularity of two straight lines, inability to differentiate basic types of angles.
D. Units of measurement	D1- Mass	9	5	Mistakes due to unfamiliarity to conversion of units of mass
	D2- Time	7	4	Mistakes due to unfamiliarity to conversion of units of time
	D3- Length	10	1	Mistakes due to unfamiliarity to conversion of units of length

	D4- Area	$\mathbf{1 0}$	$\mathbf{0}$	Mistakes due to unfamiliarity to conversion of units of area
E Problem solving	$\mathbf{8}$	$\mathbf{2}$	Mistakes right from the process of analyzing, summarizing and determining the problem lead to inability to use the correct algorithm and inability to give appropriate answers	
Total	$\mathbf{1 0 0}$	$\mathbf{2 8}$		

Assessment of the student's mathematical ability: Current mathematical ability is equal to that of a $1^{\text {st }}$ grade student. This student lacks the knowledge right from the understanding of numbers and basic calculations, resulting in consecutive difficulties in acquiring mathematical knowledge.
he solution to the case of student Ngo D. Bang: Math teacher had to tutor Ngo individually to fulfill the lacking knowledge in math for him, cut down general assignments in class, and give him individually suitable duties. Besides, the math teacher had more regular cooperation with the parents in instructing the students to review the lessons at home, as well as asked a group of better students to help him study math.

5. Conclusion

As mentioned in the introduction, there are many methods of identifying slow learners. However, not only does this method of using an exercise system categorize slow learners in terms of their cognitive abilities, but it can also identify the difficulties, mistakes and gaps in the students' knowledge. These are essential for a more effective orientation towards aiding slow learners.

References

Brennan, W.-K. (1974). Shaping the education of slow learners. Routledge \& Kegan Paul London and Boston.
Curtis, K., \& Shaver, J.P. (1980). Slow Learners and the Study of Contemporary Problems, Social Education, 44 (4), pp. 302-38. April.
Do, D. H., Do, T. D., Dao, T. L., \& Do, T. H (2015). Mathematics 1, Vietnam Education Publishing House, Hanoi.
Do, D. H., Do, T. D., Dao, T. L., \& Do, T. H (2015). Mathematics 2, Vietnam Education Publishing House, Hanoi.
Do, D. H., Do, T. D., Dao, T. L., \& Do, T. H (2015). Mathematics 3, Vietnam Education Publishing House, Hà Nội.
Do, D. H., Do, T. D., Dao, T. L., \& Do, T. H (2015). Mathematics 4, Vietnam Education Publishing House, Hanoi.
Do, D. H., Do, T. D., Dao, T. L., \& Do, T. H (2015). Mathematics 5, Vietnam Education Publishing House, Hà Nội.
Don Eastmead, M. D., \& Drew Eastmead (2004). What is a Slow Learner? Neurology 7645 Wolf River Circle Germantown, TN 38138
Holec, H. (1981), Autonomy in Foreign Language Learning, Oxford Publishing House.
Newman, M.-A. (1977). An analysis of sixth-grade pupils' errors on written mathematical tasks. Victorian Institute for Educational Research Bulletin, 39, 31-43.

Nguyen, V. C., Le, T. N., \& Phan, T. Q. (2002). The popular mistakes of solving problems, Vietnam Education Publishing House, Hanoi.
Nguyen, V.-T. (2015). Assessment on the reliability of messurement. doi: http://ykhoa.net/baigiang/lamsangthongke/lstk10_danhgiadotincay.pdf
МЕНЧИНСКАЯ Н. А. КАЛМЬЬКОВАЗ. И. (1964), ПРОБЛЕМЬЬ ПРЕОДОЛЕНИЯ НЕЧСПЕВАЕМОСТИ, НАРОДНОЕ ОБРАЗОВАНИЕ, NО.4.
Surabhi, V. (2013). Are you dealing with a slow learner? doi: http://www.thehealthsite.com/diseases-conditions/are-you-dealing-with-a-slow-learner/
Reddy and Ramar (2006). Slow Learners their Psychology and Instruction. Discovery Publishing House. New Delhi. pp. 1-114.
Sangeeta, C. (2011). Slow learners: Their psychology and Educational programmes, Zenith- International Journal of Multidisciplinary Research.
Shaw, S., Crimes, D. \& Bulman, J. (2005). Educating Slow Learners: Are the last, Best Hope for their Educational success?, The Charter schools Resource Juornal
Tansley, A. E., \& Guilford, R. (1962). The Education of Slow Learning Children. Routledge and Kagan Paul Ltd. London. Pp. 45-190.
Tran, T.-T. (1997). Intellectual Development of elementary students, Technological and scientific theme by Ministry of Education and Training, Vietnam Institute of Educational Sciences, Hanoi.
Vu, Q. C., Dao, T. L., Do, T. D., Tran, N. L, Nguyen, H. Q., \& Le, N. S. (2005). Syllabus of elementary mathematical teaching method, primary school education college traning textbook, Vietnam Education Publishing House, Hanoi.
Yusha'U, M.-A. (2012). Teaching slow learners in Mathematics: Yugal Remediation Model as alternative method, Springer International Publishing Switzerland.

