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Abstract. This study examined the effects of using tutorials in pre-
calculus content on college students’ performance in Calculus 1 as 
measured by the levels of conceptual development delineated through 
critical learning paths based on their achievement scores and quizzes. 
Our main objective is to provide evidence that a strong grounding in 
pre-calculus concepts is necessary for students’ success in Calculus and 
beyond. We employed Knowledge Space Theory (KST) to analyze data 
collected on a set of calculus questions that reflect different levels of 
conceptual development. These calculus questions were given to a group 
of students enrolled in calculus classes at a Southeastern urban 
university in the United States. Three tests were examined and the 
knowledge states were extracted for each test (using Visual Basic 
software) and knowledge trees were constructed (using an R package) to 
determine students’ critical learning paths. The findings of this study 
revealed that critical learning paths supported evidence that a strong 
foundation in Precalculus is necessary for students’ success in Calculus 
and beyond. Juxtaposing the succession of knowledge states and critical 
learning paths reflected student understanding of the basic calculus 
concepts and proposed a systematic approach to supplemental 
enrichment and remediation.  
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1. Introduction 
As undergraduate students continue to struggle in calculus courses, the 
mainstream belief that these courses act as gatekeepers preventing students from 
majoring in STEM fields is further confirmed. According to a study conducted 
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by the Mathematical Association of America (MAA), about 47% of students 
received a D or better in Calculus I (Ganter & Haver, 2011). The other 53% either 
failed the course or dropped the class. This high “failure” rate raised serious 
concerns among educators and mathematicians. Such concerns are exacerbated 
for women as typically they are twice less likely to continue beyond Calculus I, 
even when Calculus II is a requirement for their intended majors (Bressoud et 
al., 2013). Not surprisingly, Freeman et al. (2014) argue that the majority of 
failing grades occur in classes that use the more traditional lecture method of 
teaching rather than student-centered approaches. To compensate for the dismal 
success rate in calculus, the National Science Foundation (NSF) supported grants 
that addressed the undergraduate calculus curriculum and failure rate (Ganter, 
2001). These grants created a nationwide effort to reform the way calculus was 
taught at the undergraduate level. While reform methods for teaching calculus 
differed across the nation, some common themes emerged. Cooperative 
grouping, writing, and effective use of technology were found to be very 
effective in curbing the high failure rate in calculus courses amongst 
undergraduates (Pilgrim, 2010). 
 
With the increased funding and research being poured into calculus studies, one 
would think that the national failure rate would be tremendously lower now 
than in the mid-eighties or nineties. However, current data suggest the opposite. 
Pilgrim (2010) and Reinholz (2009) both agree that the national failure rate, a D 
or F, for students initially enrolled in Calculus I is about 40%. Once most 
programs of study require a letter grade of C or higher, grades of D and F would 
both be considered failing. A true comparison cannot be made between the mid-
eighties and today and the true cost of the national failure rate in calculus 
remains difficult to calculate. Is failing first-year calculus causing students to 
change majors? Drop out of planned careers? Or even shorten their college 
careers altogether by withdrawing from school? 
 
According to the US National Center for Education Statistics (NCES), of all the 
bachelor’s degrees awarded in 2009, only 16% were in mathematics, computer 
science, physical sciences, and engineering (Snyder & Dillow, 2010). The latest 
data shows that women earned 60% to 62% of all associate’s degrees awarded 
between 2000 and 2015 (National Science Foundation (NSF), 2018). The 
proportion of women earning science and engineering associate’s degrees, 
however, declined from 48% in 2000 to 44% in 2015. Most of the decline is 
attributed to a decrease in women’s share of computer sciences associate’s 
degrees, which dropped continuously from 42% in 2000 to 21% in 2015 (National 
Science Board, 2018a &b). 
 
In contrast to the declining college success of students in Calculus I, high school 
enrollment in Precalculus, Advanced Calculus, and dual enrollment has never 
been higher. A 2015 report of the National Center for Educational Sciences (Kena 
et al., 2015) showed that about 15% of ninth-graders typically earn at least some 
high school credit in calculus; while about 9% of students could reach Algebra I 
or less. Moreover, about 37% of fall 2009 ninth-graders had earned high school 
credit in an AP or IB course by 2013, and 15% had earned AP or IB credit in 



125 

 

©2020 The authors and IJLTER.ORG. All rights reserved. 

math, while 14% had earned such credit in science. With more high school 
students taking calculus courses in high school, why does the failure rate at the 
college continue to increase? 
 
Extensive literature has provided numerous recommendations on the usefulness 
of calculus and the promising ways to increase the percentage of students 
passing calculus classes. Berkaliev and Kloosterman (2009) explained that 
students' perception of their chances to obtain a passing grade of C or higher 
either helps or impedes the learning of mathematics. In another vein, and 
according to Bishop-Clark et al. (2010), dual enrolment can change the attitudes 
and readiness of high school students for college mathematics. The authors 
found that students who were enrolled in career technical education programs at 
the high school level were significantly more likely to "graduate, more likely to 
enroll in college, more likely to enroll in a four-year college, and more likely to 
progress faster in post-secondary degrees" (p. 90). Students' beliefs and attitudes 
towards mathematics can also affect how they choose to approach mathematical 
problems (Bonne & Johnston, 2016). If students do not have an understanding of 
the usefulness of the mathematics courses in facilitating future career choices, 
then student motivation and time spent on solving mathematics problems will 
likely decline. Likewise, Rajagukguk (2016) showed that students who have a 
positive attitude towards learning calculus are more likely to have a higher 
success rate in Calculus than those who do not. Therefore, a common 
assumption held by those that research student attitudes toward mathematics is 
that there is a relationship between attitude and academic achievement. 
 
Currently in calculus research, there are several common interventions that 
researchers have found to decrease the failure rate in post-secondary calculus. 
These include writing about calculus concepts and technology (Kay & Kletskin 
(2010), hands-on explorations (Klymchuk & Zverkova, 2010), higher-level 
questioning and cooperative learning groups (Cardetti & McKenna, 2011). When 
these interventions were implemented, students succeeded at a higher level than 
students in a traditional calculus course taught through instructor-driven 
lectures. For example, Karaali (2011) found that students were able to think 
critically when asked to write about why they were taking calculus and what 
they were getting out of it. Based on Bloom's Taxonomy, the researcher noted 
that students purposefully engaged in writing activities that required 
performance at the highest level of the taxonomy, namely evaluation. Toward 
the end of the course, Karaali (2011) had the students evaluate their contribution 
to the course by allowing the students to write as "coherently as possible" and 
this "created a more reflective, more conscious, and thus a more effective 
learning experience for all involved" (p.732). 
 
In another research, Klymchuk et al. (2010) conducted a parallel study at two 
different universities, one in Germany and the other in New Zealand. The study 
examined engineering students’ difficulties in “the formulation steps of solving 
a typical application problem from a first-year calculus course” (p. 81). 
Klymchuk et al. (2010) explained that common application problems tend to be 
long and mathematized. The authors noted that, while students were not 



126 

 

©2020 The authors and IJLTER.ORG. All rights reserved. 

required to collect or analyze data to make assumptions, in many application 
problems they still “have to go through the formulation step of the mathematical 
modeling process that often requires choosing/constructing a formula or setting 
up a function for further investigation" (p. 81). The findings of this study 
provided evidence that calculus courses need to reinforce basic skills in solving 
application problems early on and that writing the steps in detail help students 
solve real-life problems that require mathematical modeling skills in other 
classes and their future careers (Crouch & Haines, 2004).  
 
The second common area in calculus research is technology. Different forms of 
technology have long been implemented in the undergraduate learning 
environment. For example, utilizing the TI 84 and higher calculators has become 
standard in most classrooms. Naidoo and Naidoo (2007) found that when 
students in their undergraduate classes used the computer to perform tasks for 
"their compulsory project (they) had the advantage of using constructive 
interactive methods and cooperative learning strategies to aid their 
understanding of concepts" (p. 62). The blended method of teaching helped 
offset the large class sizes and the weak preparation by the students. The 
students also felt that the computers helped with the "disinterest in the subject" 
(p. 55). In a similar vein, Kay and Kletskin (2010) explained that the students 
who used online mini-clips felt that they were more prepared for class and used 
the mini-clips "to review past lessons and examples" (p. 103). Some of the 
features that undergraduate calculus students found useful about the mini-clips 
were the ease with which they could follow the lessons, the clear explanations, 
and the freedom to view the clips on their own time. It is worth mentioning 
though that, when incorporating the computer into any classroom setting, 
computer software design is important. If the programs are too advanced for the 
learner, then the result could be the same as having a lecturer at the front of the 
room while a class full of undergraduates sit and wonder when they should 
drop the class. 
 
The third common area of research that has been conducted in calculus classes is 
the cooperative learning groups. In this context, Cardetti and McKenna (2011) 
argued that several different factors motivate undergraduate students to engage 
in cooperative learning environments. Intrinsic satisfaction, competition and the 
formation of sharing groups are three important incentives the researchers cited 
to increase undergraduate students’ mathematics scores. 
 
While improving STEM (Science, Technology, Engineering, and Mathematics) 
education in the United States has been a critical national concern, the pipeline 
of students entering STEM does not meet the current demand for future 
scientists and engineers. One of the reasons identified for this attrition has been 
students’ underperformance in calculus classes and their inadequate preparation 
in Precalculus content. Hence, addressing this national need requires research 
and development of the best pathways to remediate the teaching of Precalculus 
and calculus concepts, which would translate into efficient models of providing 
support to students in learning the content. 
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In this study, we examined the effects of using tutorials in pre-calculus content 
on students’ performance in Calculus 1 as measured by the levels of conceptual 
development delineated through critical learning paths. Performance is reflected 
in their achievement scores and quizzes. Using Knowledge Space Theory (KST) 
approaches our main objective is to provide evidence that a strong grounding in 
pre-calculus concepts is necessary for students’ success in Calculus and beyond. 
Specifically, the study addresses the following question: What is the effect of 
using tutoring of pre-calculus concepts/content on students’ achievement in 
calculus as measured by the levels of conceptual development delineated 
through KST critical learning paths? 
 

2. Knowledge Space Theory: A Framework to Evaluate Student 
Knowledge 
 
Admittedly, assessing students’ conceptual understanding of mathematics, 
particularly at the college level, can be a daunting task. With many different 
methods to evaluate performance, it is hard to know which are effective, 
considering the depth and breadth of knowledge that students are required to 
master. Principled by a structural analysis of responses to assessment tools, 
Knowledge Space Theory (KST) is a formal method or model for representing 
students’ knowledge in a given context (Sanghoon, Belkasim, Chahine, & 
Grinshpon, 2014). The structure created provides details related to students' 
knowledge and the learning paths taken to acquire that knowledge. As an 
assessment procedure, KST can inform the instructor of the order in which a 
group of students are mastering different concepts given during instructional 
periods. Falmagne et al. (1990) and Doignon and Falmagne (2015) introduced 
KST as a "means to formally describe the structure of a given domain of 
knowledge" (p. 201). Broadly, the structure is depicted through the problems 
that students can answer correctly. Students' responses on a given assignment or 
test become a subset of the overall structure and a learning path can be traced 
from the null set of problems attempted (none correct) to the complete set (all 
correct). 
 
By the same token, Arasasingham et al. (2005) employed KST to assess learning 
in chemistry at two different universities. They found that “secondary students 
leave high school with significant deficiencies in their understanding of basic 
chemical principals” (p. 1522). Their KST analysis showed that students’ logical 
framework of understanding basic chemistry was very weak. Their analysis 
revealed that while students may know basic factual information, they were not 
able to transfer and utilize this knowledge to solve conceptual problems. The 
researchers connected these problems to the teaching methods at the high school 
level and the textbooks used. They further indicated that students’ inability to 
connect factual information and conceptual problems “was not surprising since 
the information students use to construct their knowledge comes from either 
texts or instruction, both of which tend to present the material in this manner” 
(Arasasingham et al., 2005, p.1522). Arasasingham et al. further explained that 
KST “is a useful tool for revealing various aspects of students’ cognitive 
structure” (p. 1522) and that not only can KST be used as an assessment tool but 
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also as “a pedagogical tool to address a number of student learning issues” (p. 
1523). As an assessment tool, KST has the potential to monitor the development 
of students’ conceptual understanding of the taught concepts. Moreover, with its 
facility to delineate learning trajectories, KST can also gauge how well students 
can use the concepts taught and utilize them in solving problems across 
situations. According to Arasasingham et al. (2005), not only can KST help 
analyze the nature of the knowledge that students bring to a course, but it can 
“assess whether students have conceptualized the content as intended after the 
conclusion of the course” (p. 1523). 
 
Besides chemistry and mathematics, KST has been employed to identify learning 
pathways in many different settings, such as comparing textbook assigned 
homework versus online homework (Arasasingham et al, 2005), and finding the 
best model to teach the concept of describing an ion (Tóth & Ludányi, 2007). 
According to Steiner et al. (2009), KST can also be blended to integrate two 
teaching pedagogies, namely self-regulated learning and competence-based 
enhanced online learning. KST has also been adapted to aid in assessing the 
clinical responses of an in-depth psychological assessment (Spoto et al., 2010). 
 
Generally, in the KST framework, a field of knowledge is specified by a finite set 
of items. This set consists of the problems or questions that a student may or 
may not be able to solve on a given assessment (Sanghoon, Belkasim, Chahine, & 
Grinshpon, 2014). Each student can be described by his/her knowledge state, 
which is the subset that is created by the number of problems or questions they 
answered correctly (Doignon & Falmagne, 2015). After each member of the class 
has a subset or their knowledge state-determined, the subsets are combined to 
create the field of knowledge. The field of knowledge shows the learning paths 
that the entire group took to maneuver from the null set ∅ (all responses 
incorrect) to the complete set Q (all responses correct). 
 
It is worth mentioning that the learning paths do not necessarily follow the 
assessment questions in chronological order. For example, if the learning path 
for five questions was 1-3-2-5-4 then it can be said that before question two can 
be answered correctly, question three must be mastered. It is important to note 
that not all possible subsets of items are knowledge states since a prerequisite 
relationship between the assessment items could exist. The set of all possible 
knowledge states is called a knowledge space. 
  
The method to select these states is an orderly trial and error process using the χ2 
analysis. Chi-Square statistic (χ2) is based on the difference between the actual 
response states and the expected knowledge states. To begin, the most 
populated response states are added and subtracted to minimize the χ2 value, 
forming an interconnected network where each state (other than ∅ and Q) has a 
preceding state and a succeeding state. Each successive state has exactly one 
more question than the preceding one. At first, many of the largely populated 
response states are combined with other possible response states to form a 
provisional knowledge structure that is then modified by the addition and 
subtraction of states in an evolution toward a final knowledge structure with its 
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minimum χ2 value. The χ2 calculation indicates how well the selected states 
represent the original data set. The resulting knowledge structure can reveal 
several learning pathways that students use to learn. Stahl and Hockemeyer 
(2019) defined a learning path as “a maximal sequence of knowledge states, 
which allows learners to gradually traverse a knowledge structure or space from 
the empty set (∅) (or any other bottom state) to the full set of domain problems 
Q” (p.9). Beginning at the empty set (∅), to full mastery state (Q) the learning 
pathways can be mapped out. 
 
Once the knowledge structure has been created, the approximate probability 
value for each knowledge state is found from the χ2 fit. The probability value for 
each knowledge state represents the portion of students in the classes who are in 
the knowledge state. From the largest probability knowledge states, the best or 
most probable learning pathway is identified as the critical learning pathway 
consisting of response states, which best define the class. If some of the most 
populated responses do not appear on the critical learning pathway, that means 
that getting that sequence of questions correct on the test does not necessarily 
mean that there is not a logical framework or true comprehension of the 
material. Once the critical pathway is established, it is then possible to compare 
each student to the general class performance as well as to the top performers 
(the Q set). 
 

3. Study Methods 
 

Participants 

The participants in this research study were students enrolled in the Calculus I 
course. This is a 4-credit course required for the university’s undergraduate 
students majoring in Mathematics, Statistics, Physics, Chemistry, Computer 
Science, Actuarial Science, and Geology. Many students from other majors also 
take this class, most notably Biology majors (on average approximately 25-30% 
of the total number of students enrolled in Calculus I) on the pre-med track. A 
typical enrollment in one section of Calculus I is 40-47 students, and there are 
usually 8-10 sections of the course each semester. 
 
At the beginning of the study, two sections of Calculus I taught by the same 
instructor were chosen and randomly assigned as the experimental and the 
comparison group. Early in the semester, students were given a "Prerequisite 
Skills Check" – a quiz consisting of 24 basic Precalculus problems, each 
involving a Precalculus concept or skill that is necessary for calculus; the same 
quiz was administered at the end of the semester. The pre-quiz measures the 
incoming students' baseline knowledge of Precalculus, hence a comparison 
between the pre and post quiz results measured the change in that knowledge.  
 
Throughout the semester both sections completed their regular coursework, 
which includes practice homework, 10-15 online graded quizzes, in-class tests, 
and a comprehensive final exam – all testing the calculus material taught in 
class. The experimental group (hereafter the TUTORING group) was also 
offered scheduled tutoring sessions with a teaching assistant. Students were 
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continuously encouraged to attend these sessions, which were student-centered, 
and focused on individualized tutoring tailored to specific students’ needs with 
emphasis on Precalculus problem-solving skills (See Table 1). 
 

Table 1. A list of Precalculus tutoring topics 

Week Precalculus Topic 

One Properties of exponents 

Two  Simplifying rational expressions 

Three  Roots and radicals 

Four Trigonometric functions and the unit circle 

Five  Composition of functions 

Six Unit Circle 

Seven  Review of elementary functions. 

Eight  Solving algebraic inequalities 

Nine  Solving trigonometric equations and inequalities. 

Ten Graphs of functions 

Eleven  Area under the graph 

Twelve The laws of limits 

Thirteen  Limits of functions  

 
The tests were graded by a group of Graduate Teaching Assistant (GTA) 
graders, each working with a particular instructor. They were also responsible 
for the weekly homework assessments, which consisted of just three or four 
questions. Weekly meetings were held for the homework graders to ensure 
consistency of scoring. The meetings were designed to preview the following 
week's homework, point out potential pitfalls, and allow graders to share how 
they graded the previous week's questions. The weekly meetings were led by 
one of the instructing faculty members, allowing graders to see first-hand 
examples of what the faculty was expecting. The leading faculty member 
consistently gave several possible methods to obtain the correct response to the 
assessment questions and the graders were also asked to prepare potential 
solutions to the following week's assessment questions. This arrangement kept 
instructors and graders engaged and informed of the direction that the calculus 
homework grading was taking. 
 

Procedure and Data Collection 

We used three instruments to collect data: 1) tutoring observation logs, 2) 
calculus tests and final exam, and 3) pre and post Precalculus Skills Check 
quizzes. Some problem items in the regular tests were specifically redesigned as 
multiple part questions to obtain separate numerical scores on both Calculus 
and Precalculus aspects. Tests were graded by a set of graders who worked with 
each instructor exclusively and were also responsible for the weekly homework 
assessments, which consisted of just three or four questions.  
 
Weekly meetings were led by one of the instructing faculty members, allowing 
the graders to see, first-hand, the level of performance that the faculty was 
expecting.  The leading faculty member consistently shared several possible 
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methods to obtain the correct response to assessment questions and graders 
were also encouraged to produce possible solutions to the following week’s 
assessment questions. Engaging the graders to co-create grading schemes with 
faculty was necessary to clarify the expectations for grading calculus homework 
and to ensure consistency of scoring.  The meetings were designed to preview 
the following week’s homework, point out potential pitfalls, and allow the 
graders to share how they graded the previous week's questions.   
 

Data Analysis using KST 
We employed knowledge Space Theory (KST) (Falmagne et al, 1990; 
Arasasingham et al., 2005) to analyze and extract critical learning paths to assess 
performance in two calculus classes: experimental and comparison class. The 
experimental calculus course included requisite Precalculus concepts taught in a 
constructivist manner, using problem-based learning that is less restrictive than 
the traditional calculus course, which typically involves students sitting quietly 
while an instructor lectures. We hypothesized that incorporating Precalculus 
concepts using multiple representations and through cooperative learning 
techniques in the experimental calculus class could create a learning 
environment more supportive of meaningful learning. Such an assertion is 
supported by our belief that calculus cannot be learned through watching and 
listening – it is learned by doing. Using data collected from both groups of 
students and analyzing questions reflecting different levels of conceptual 
development allowed us to determine the critical learning paths of students in 
the Calculus class. 
 
Three tests were examined and the knowledge states were obtained for each 
(using visual basic software) and knowledge trees were constructed (using an R 
package) to determine these critical paths. We hypothesized that concepts 
acquired by students include: solving algebraic inequalities (Pre-calculus), finding 
the velocity and the acceleration as derivatives (Calculus), sketching two graphs and the 
region between them and finding their points of intersections (Pre-calculus), finding an 
anti-derivative (Calculus), evaluating anti-derivatives (Pre-calculus), and integrating to 
find the area (Calculus).   
 
Using (KST), we were able to map students' knowledge structure on solving pre-
calculus problems which depicts students' knowledge structure and state at 
different levels of the intervention. For example, we were able to monitor 
students' initial knowledge upon entering the class and assess the additional 
knowledge states that students acquired as a result of explorations and 
intervention. Based on this knowledge structure, we were able to detect the 
critical learning pathways during course assessments. In the next section, we 
discuss in detail the process of examining student knowledge based on KST 
approaches. 
 
To process the data, we utilized Potter’s Visual Basic code, which converted the 
response structure into knowledge structure and allowed the detection of the 
critical learning pathways. The raw data from the test results were obtained and 
the highest point (completely correct answer) of each question was coded as ‘1’ 
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and the points lower than the highest point (correct or partially correct) was 
defined as ‘0.’ Table 2 shows data entered into a text file as the input file. 
 

Table 2. Coded test results data 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
As indicated in Table 2, the first column before the comma represents the 
knowledge states for each student on questions 1 to 10, with ‘1’ representing a 
correct answer and ‘0’ representing an incorrect (partially or fully) answer. The 
second column right after the comma indicates the number of students at the 
same response state. In the case of Test 1 for the comparison group, there were 
31 knowledge response states. The rows after the 31st row are the knowledge 
states of assumed/expected knowledge structure, which have a 0 right after the 
comma for each row (see Table 3). 
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Table 3. Knowledge states for Test 1 

 
Copying this text file into Potter's Visual Basic program allowed us to 
automatically generate the output file. Before running this program, however, 
we checked the directories of input and output files, the number of questions, 
the number of students, and the number of responses and assumed responses in 
the file. The Visual Basic code that was used in this case already had an 
estimated 10% probability for both lucky-guess and careless errors. After 
running the program, we obtained the output file in Table 4.  
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Table 4. Output file for Test 1 
 

 
 

In Table 4, n is the number of initial response states, m is the number of states in 
the assumed knowledge structure, and the population is 44 in the comparison 
group. The first column includes knowledge states for each student on questions 
1 to 10, which similar to that of column 1 in Table 2. The second column 
represents the probability of the population in the given response state, and the 
third column is the predicted population in the assumed state. The fourth 
column represents the real population in a certain state while the last column is 
the χ2 value calculated from the real population and predicted population. The 
total χ2 value indicates whether the assumed knowledge structure fits the 
original response structure. In this case, the degree of freedom (df) can be 
defined as the summation of the number of knowledge states and the number of 
lucky-guess and careless errors minus 1. In Table 3, the degrees of freedom are 
given by the following equation: df = m+ 10 ∙ 2 − 1 = 44 + 20 − 1 = 63. 
Extracting the response state, predicted population, and real population from 
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Table 3, we obtained either response state and real population or knowledge 
state and predicted population. 
 
After loading skills function in the R package, a test on the response structure of 
the comparison group for Test 1 was conducted. A function called kspace() was 
used to create a knowledge space that includes one state for the empty set {}, one 
state for the full set of domain items, and a state for the union of any two 
knowledge states. 
 
The knowledge structure (KS) for the experimental group (Test 1) was created 
by entering the following: 

Ks ← 
kstructure(set(set(1,2,3,4,5,7,8,9,10),set(1,2,3,4,5,7,9,10),set(2,4,5,6,7,8,9,10),set(1,2,
3,4,5,8,10),set(1,2,4,5,7,8,10),set(2,4,5,6,7,8,10),set(1,2,4,5,7,8),set(1,2,6,7,8,9),set(1,4,
5,6,7,8),set(1,4,5,7,8,10),set(2,3,4,5,7,8),set(1,4,5,9,10),set(1,4,7,8,9),set(3,4,5,7,10),set
(1,3,4,5),set(1,7,8,10),set(3,8,9,10),set(4,5,7,8),set(7,8,9,10),set(1,4,5),set(3,4,5),set(3,
7,8),set(4,5,9),set(4,5,10),set(7,8,9),set(1,5),set(4),set(7),set(9),set(10))) 
where kstructure is the function to create a knowledge structure and it is stored 
as Ks. Next, the command Ksp ← kspace(Ks) generates the knowledge space and 
store it as Ksp. Typing t(convert(Ksp)) shows the knowledge space structure in 0 
and 1. In this case, the knowledge space structure is quite large, consisting of 151 
knowledge states of the generated knowledge space. 
 

 
Figure 1: Knowledge states for Test 1 comparison group 

 
Since the size of data is large for this test, the result of the plot is not 
decipherable. As a result, we were unable to determine the critical learning path 
based on the Figure depicted above. 
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We also generated the knowledge structure for the experimental group for Test 2 
in a similar way by typing the following code: 

Ks ← kstructure(set(set(1,2,3,4,5,6,7), set(1,2,3,4,5,6), set(1,2,3,4,6,7), set(1,2,3,5,6), 
set(2,3,5,6,7),set(1,2,3,4),set(1,2,4,6),set(1,2,5,6),set(1,2,6,7),set(1,3,6,7),set(1,2,6), 
set(1,3,6),set(1,3,7),set(2,5,6),set(3,5,6),set(1,6),set(3,6),set(4,6),set(6,7),set(6))) 

Ksp ← kspace(Ks). 
 
Figure 2 shows the output Table and Figures 3a & 3b depict the knowledge 
states and critical learning paths for Test 2 experimental group.  
 

 
 

Figure 2: Output file for Test 2 experimental group 
 

 
Furthermore, we show the knowledge structure of the experimental group in 
Test in Figure 3a. The number at the upper right corner of a box means the 
predicted population who can solve the items that are listed in the box. For 

instance, the number 0.83 denoted an exponent in means that 0.83 
predicted students can solve questions 1 through 7. The knowledge states in 
Figure 3a fit very well (>99.9%; p<0.001) to the initial response states.  
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Figure 3a: Knowledge states for Test 2 experimental group (χ2=11.502; df=65; p<0.001; 
>99.9%) 

 
 
When looking at the knowledge structure tree for the experimental group for 
Test 2, we noticed eight levels of knowledge states. The knowledge state at the 
bottom of the tree is considered the null set where nothing is answered correctly. 
The predicted population to obtain this outcome is indicated by the number 
above and to the right of this box. For the experimental group for Test 2, the 
predicted population is 3.43. The second level of the knowledge structure tree 
has one knowledge state with the number six in it. This number indicates that of 
all the students who correctly answered one question on the test, the highest 
frequency of correct responses was depicted for question six. The predicted 
population for this knowledge state is 3.95 students. The first edge of the 
learning path was created when these boxes were connected. 

 
The third level of the knowledge structure tree had four different knowledge 
states. The learning path is connected to the knowledge state that has the highest 
predicted population and is connected to the previous knowledge state levels. 
Both of these conditions must be met to continue the critical learning path. If the 
box with the highest predicted population outcome is not connected to the 
knowledge state, then the second-highest connected knowledge state must be 
selected. 
 
The fifth and sixth levels of the knowledge structure tree had fifteen and 
fourteen knowledge states respectively. This shows that the knowledge structure 
tree had greater variation and is not considered very organized. The total 
number of knowledge states for the entire knowledge structure tree is 52. Ideally 
the number of knowledge states should be less than the population of the class. 
 
The seventh level of the knowledge structure tree had six different knowledge 
states. This shows that among the students who answered six out of the seven 
questions correctly, they are still experiencing greater variations with many 



138 

 

©2020 The authors and IJLTER.ORG. All rights reserved. 

different potential critical learning paths. The seventh level also has two 
knowledge states that are larger than the knowledge state selected for the critical 
learning path. The knowledge state just to the right of the selected knowledge 
state for the critical path has a predicted population of 0.88. The knowledge state 
selected for the critical learning path is only 0.47. On the seventh level, there is 
yet another knowledge state that had a larger predicted population than the 
knowledge state selected for the critical learning path. As mentioned previously, 
these two knowledge states with higher predicted population outcomes (0.88 
and 0.65) are not connected to the previous level knowledge state. Therefore, the 
critical learning path cannot be connected to either of these higher predicted 
population knowledge states. 

 
We also delineated the critical learning pathway for Test 2 experimental group 
that depicts the knowledge states with the highest populations (See Figure 3b).  

 
 

 

 
 
 
 
 
 
 
 

Figure 3b: Critical learning path for Test 2 experimental group 

 
To determine the critical learning path, we selected the knowledge state with the 
highest population and fewest questions as the head of the critical learning path. 
Then, we identified the highest population superset of the selected head as the 
second set. By repeating the steps, all sets can be connected by the relationship 
between the subsets and the supersets. The critical learning pathway can be 
determined by these selected sets. For instance, the critical learning path of Test 
2 for the experimental group is 6 → 3 → 1 → 7 → 2 → 4 → 5 (Figure 3b). The 
questions that are related to this critical learning path are: taking a second 
derivative (Calculus) → taking a derivative (Calculus) → solving simple equations for 
one of the variables (Precalculus) → solving an algebraic inequality (Precalculus) → 
finding the rate of change as the derivative (Calculus) → taking a derivative (Calculus) 
→ evaluating a trigonometric expression (Precalculus). 
 
For the comparison group, the knowledge states and critical learning paths were 
extracted as shown in Figures 4a & 4b.  The knowledge structure tree showed 
traits of disorganization similar to the knowledge structure tree found for the 
experimental group. The fourth, fifth, and sixth levels have large numbers of 
knowledge states. There was a total of thirty knowledge states on these three 
levels accounting for 61 percent of all knowledge states, which provided 
evidence that the knowledge structure tree is also not very organized. The total 
number of knowledge states, forty-four, greatly exceeded the population of the 
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class. On the sixth level of the knowledge structure tree, there was a knowledge 
state that had a higher predicted population outcome than the knowledge state 
selected for the critical learning path. This result was expected since the fifth 
level knowledge state was not connected to this higher knowledge state on the 
sixth level as previously explained. 

 

 
Figure 4a: Knowledge states for test 2 comparison group (χ2=7.78; df=57; p<0.001; 

>99.9%) 
 

To delineate the learning path, we noted the following trajectory:  6 → 1 → 7 → 2 
→ 3 → 5 → 4 corresponding to the question items: taking a second derivative 
(Calculus) → solving simple equations for one of the variables (Precalculus) → solving 
an algebraic inequality (Precalculus) → finding the rate of change as the derivative 
(Calculus) → taking a derivative (Calculus) → evaluating a trigonometric expression 
(Precalculus) → taking a derivative (Calculus) (See Figure 4b).  

 
 
 
 
 
 
 
 
 
 

Figure 4b: Critical learning path for Test 2 comparison group 

 
It was obvious that the path for the experimental group is different, with the 
main difference being the order of question 3, which is related to taking a 
derivative. Question 4, which is also about the derivative, is considered as a 
difficult question for both groups. Test 2 for the comparison group contains only 
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26 knowledge states (Figure 4a), which is simpler than that of the experimental 
group. Simpler knowledge structures in the comparison group indicate better-
organized knowledge (Arasasingham et al., 2005). However, we only can 
assume that different groups may have different levels of understanding of the 
calculus of taking derivatives. 
 

For Test 4, we used the same process to generate the output of knowledge 
states and to create the knowledge structure for the experimental (Figure 5a) and 
comparison groups (Figure 6a). We found the critical learning path of Test 4 for 
the experimental group (Figure 5b) to be: 1→ 2 → 5 → 3 → 4 → 6, which is: 
solving algebraic inequalities (Precalculus) and finding the velocity and the 
acceleration as derivatives (Calculus) → sketching two graphs and the region between 
them and finding their points of intersections (Precalculus) → finding an antiderivative 
(Calculus) → evaluating antiderivative (Precalculus) → integrating to find the area 
(Calculus). 

 
 

Figure 5a: knowledge states for Test 4 experimental group (χ 2=4.067; f=29; p < 0.001; > 
99.9%) 

 
 
A close comparative examination of the knowledge structure trees for Test 4 in 
the experimental group revealed the greatest organization of all four of the 
knowledge structure trees that emerged for both groups. There were only six 
total levels because none of the students correctly answered only one question 
on the test. Therefore, the second level of the knowledge structure tree 
effectively did not exist. We considered this knowledge structure tree to be more 
organized because it has a total of only 18 knowledge states. This number is 
considerably closer to the class population than the previous knowledge 
structure trees. Furthermore, the critical learning path for this knowledge 
structure tree (See Figure 5b) passed through the highest predicted population 
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outcomes for each knowledge state at each level, showing a more direct learning 
path from the null set at the bottom to the complete set at the top. 
 

 
 

 
 
 

 
 
 
 
 
 
 

Figure 5b: Critical learning path for Test 4 experimental group 
 

Similarly, the knowledge structure tree for the comparison group on Test 4 also 
showed better organization than the two knowledge structure trees from Test 2 
(See Figure 6a). The knowledge structure tree had seven levels and thirty 
knowledge states. The fourth and fifth levels of the knowledge state tree 
contained the majority of the knowledge states with about fifty-seven percent of 
the knowledge states occurring on these levels.  

 
Figure 6a: knowledge states for Test 4 comparison group (χ2=7.846; df=31; p < 0.001; > 

99.9%) 

 
The critical learning path also passed through each of the highest predicted 
population knowledge states for each level (See Figure 6b). 
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Figure 6b: Critical learning path for Test 4 comparison group 
 

This pattern of critical learning path is also different for the comparison group 
for Test 4, which is: 2 → 1 → 6 → 5 → 3→4 (Figure 6b). The corresponding 
questions are: solving algebraic inequalities (Precalculus) → finding the velocity and 
the acceleration as derivatives (Calculus) → integrating to find the area (Calculus) → 
sketching two graphs and the region between them and finding their points of 
intersections (Precalculus) → finding an antiderivative (Calculus) and evaluating 
antiderivative (Precalculus). The major difference in the critical learning pathways 
between the comparison and experimental groups is the order of question 6. We 
concluded, in this case, that the experimental group did not fully comprehend 
the integration concept.  

 
Similarly, we performed the analysis for the final exam, which had a total of 14 
questions, 6 of which are related to Precalculus concepts. We generated the 
output of knowledge states and created the knowledge structure for the 
experimental (Figure 7a) and comparison group (Figure 8a). For the final exam 
in the experimental group, the critical learning path that emerged is 6 → 4 → 2 
→ 5 → 1 → 3 (Figure 7b) and the related topics were: sketching and finding the area 
→ finding the domain and intercepts → evaluating to find the limits → taking a 
derivative → finding maximum value → evaluating to find limits. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Figure 7a: knowledge states for final exam experimental group 
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Figure 7b: Critical learning path for final exam experimental group 

 
The critical learning path for the comparison group was found to be 4,6 

→ 2 → 5 → 3 → 1, and the related topics were: finding domain and intercepts and 
sketching and finding the area → evaluating to find the limits → taking a derivative → 
evaluating to find limits → finding maximum value (Figure 8b). 

 

 
Figure 8a: Knowledge states for final exam comparison group 

 
 
 
 
 
 
 
 
 

 
 

Figure 8b: Critical learning path for final exam comparison group 
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4. Findings and Discussion 
 

Overall, this study showed that the knowledge structures of the comparison 
group were less complex than those of the experimental group, which indicates 
that the knowledge states of the comparison group are more organized. Based 
on the degrees of freedom, the levels of knowledge organization for both groups 
were similar in Test 4. We also found that different groups have different 
understanding levels on the derivative questions. For the experimental group, 
perhaps the teacher needed to spend more time explaining how to solve 
advanced derivative questions, even though students understood how to solve 
relatively simpler ones. The performance of the experimental group also 
indicated that integration problems are more difficult to complete. 
 
When we implemented the knowledge structure theory in our first assessment, 
the test consisted of 10 questions. The possibility of a large number of subsets led 
to a knowledge structure tree that was too difficult to follow; consequently, it 
was not an easy task to determine a critical learning path (see Figure 2). After 
this first attempt, we implemented the knowledge structure theory for two 
shorter assessments. Test 2 was given within the first six weeks of the class. And 
although the knowledge structure trees on Test 2 already differed between the 
comparison and the experimental groups, it is in Test 4 that knowledge structure 
trees showed a greater change in the critical learning paths, thereby indicating a 
more developed understanding of concepts. 
 
When comparing the total knowledge states for Test 2, we detected eight more 
knowledge states in the comparison group than in the experimental group; and 
for Test 4 there were twelve more knowledge states for the comparison group. 
The experimental group also had a large reduction in the number of knowledge 
states from the second test to the first test. The number of knowledge states for 
Test 2 was 52, but for Test 4 there were only eighteen. This is a decrease of 61 
percent. The comparison group, on the other hand, had a smaller reduction in 
the number of knowledge states going from 42 in Test 2 to 30 in Test 4. This is a 
decrease of only 31 percent. 
 
Our results for Test 2 showed that the experimental group, which received extra 
instruction in Precalculus concepts weekly, completed question 3, finding 
derivatives much sooner than the comparison group. The experimental groups' 
critical learning path showed that the class had a better understanding of 
completing the first derivative and second derivative questions. We 
hypothesized that the comparison group only memorized the method for taking 
the second derivative and that is why their critical learning path has a 
substantial number of questions between the two derivative questions. It only 
makes sense that taking the derivate (question 3) and then taking the second 
derivative (question 6) should be next to each other on the critical learning path, 
not at either end in reverse order.  
 
Additionally, the knowledge structure tree diagrams for Test 2 & Test 4 revealed 
that both experimental and comparison classes did very well on concepts taught 
immediately before the test. For example, question 5 was first on the critical 
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learning path for the comparison group and second on the critical learning path 
for the experimental group. Question 5 asked students to sketch the region 
bounded between two given curves and to find their points of intersection. This 
concept, according to the course syllabus, was taught immediately before 
administering Test 4. Both classes received instruction on how to take the second 
derivate just before the assessment. The critical learning path for both classes 
started with question six in which students were asked to find the second 
derivate. The knowledge structure tree critical learning path for the 
experimental group also revealed that students completed the calculus questions 
sooner on the critical learning path than the comparison class. Moreover, the 
experimental groups’ critical learning path had questions four and five correctly 
ordered. To complete question five correctly on the critical learning path, 
students needed to answer question four accurately. And while the experimental 
group navigated these two questions in the correct order, the comparison group 
answered these two questions in reverse order. This result may mean that the 
comparison group was either guessing here or had several concepts confused. 
Therefore, students were not able to correctly apply the concepts to 
systematically solve the trigonometry application portion of the question. 
 
Furthermore, Test 4 critical learning path for the experimental group showed 
that the class was very successful in completing questions 1 and 2. These two 
questions involved finding the derivate and then using the results from question 
1 to solve the algebraic inequality for question 2. The experimental groups' 
critical learning path also revealed that students completed questions 3 and 4 in 
the correct order. To correctly complete question 4, students first had to correctly 
solve question 3, which involved finding an antiderivative and then question 4 
was evaluating the antiderivative. For the comparison group, on the other hand, 
the critical learning path for Test 4 indicated that students were neither able to 
find the derivate or anti-derivate nor apply it correctly. Questions 1 and 2 on the 
critical learning path were not only in reverse order but they were also separated 
by question 3. The comparison group completed questions 3 and 4 in the correct 
order, but they were separated on the critical learning path by question 1. 
 
It was interesting to note that the comparison group continued to have greater 
difficulty taking the derivate on Test 4 than the experimental group. This 
supported our assumption that the comparison class might have been 
memorizing how to take the derivate and not learning the concepts 
meaningfully. As the calculus course progressed through the semester, the 
comparison group’s critical learning path continued to depict derivative and 
application questions in a reversed manner. 
 

5. Conclusion 
 
In this study, we showed that an employment of knowledge space theory 
provided an efficient procedure to represent the structure of a group of students’ 
domain of knowledge in calculus. Such methodology was meaningful in 
formatively assessing students’ skills and knowledge, which provided useful 
insight into potential remediation needed to improve students’ performance. 
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Overall, critical learning paths supported the conclusion that a strong 
foundation in Precalculus is necessary for students’ success in Calculus and 
beyond. Juxtaposing the succession of knowledge states and critical learning 
paths reflected student understanding of the basic calculus concepts and 
proposed a systematic approach to supplemental enrichment and remediation. 

 
It is the intention of this study to champion the use of KST approaches as a 
means to assess student learning across diverse disciplines and at all school 
levels.  We argue that an investigation of the critical learning paths of different 
assessment strategies would give instructors the ability to generate knowledge 
structure trees that depict student acquisition of concepts, to provide guidelines 
for instructors to adjust the order of the concepts taught, and to potentially 
customize the instruction based on the expected mastery level.  
 
While improving STEM education in the U.S. has been a critical national 
concern, the pipeline of students entering STEM does not meet the current 
demand for future scientists and engineers (Carlson, Oehrtman, & Engelke, 
2010). One of the reasons identified for this attrition has been students’ 
underperformance in calculus and their inadequate preparation in Precalculus 
content. Hence, addressing this national need requires the development of 
pathways to remediate the teaching of such concepts, which would translate into 
efficient models for supporting meaningful learning. It is our conviction that 
evidence-based approaches driven by conceptually designed models such as 
KST can positively contribute to student retention and their future success in 
Calculus courses and beyond.   
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