
128

©2019 The authors and IJLTER.ORG. All rights reserved.

International Journal of Learning, Teaching and Educational Research
Vol. 18, No. 7, pp. 128-144, July 2019
https://doi.org/10.26803/ijlter.18.7.9

An Agile-DevOps Reference Architecture for
Teaching Enterprise Agile

Georges Bou Ghantous and Asif Qumer Gill
University of Technology Sydney

Sydney, Australia

Abstract. DevOps emerged as an important extension to support the
Agile development for frequent and continuous software delivery. The
adoption of Agile-DevOps for large scale enterprise agility depends on
the most important human capability such as people competency and
experience. Hence, academic education and professional training is key
to the successful adoption of Agile-DevOps approach. Thus, education
and training providers need to teach Agile-DevOps. However, the
challenge is: how to establish and simulate an effective Agile-DevOps
technology environment for teaching Enterprise Agile? This paper
introduces the integrated Adaptive Enterprise Project Management
(AEPM) and DevOps Reference Architecture (DRA) approach for
adopting and teaching the Agile-DevOps with the help of a teaching
case study from the University of Technology - Sydney (UTS), Australia.
These learnings can be utilised by educators to develop and teach
practice-oriented Agile-DevOps for software engineering courses.
Furthermore, the experience and observations can be employed by
researchers and practitioners aiming to integrate Agile-DevOps at the
large enterprise scale.

Keywords: Agile framework; Agile adoption model; Agile and DevOps;
DevOps reference architecture.

1. Introduction
Agile methodology focuses on solving computing and software engineering
problems both from human and technology perspectives (Alzoubi et al. 2015; Gill
2015; Neve et al. 2017). Recent advancements in software engineering practices
and methods facilitated the adoption of improved Agile ways of working to deal
with the complex nature of software problems (Alzoubi et al 2018; Qumer et al.
2007). Human factor, in particular, has direct influence on the quality of a
software whether it is at the academic, research or industry level (Mason et al.
2017; Gill et al. 2018;). It has been observed that communication and
collaboration present a major challenge to development teams in the IT industry
(Alzoubi and Gill 2014), in particular, if a team is geographically distributed. In

129

©2019 The authors and IJLTER.ORG. All rights reserved.

order to address the challenges of team collaboration, Agile requires a project
management system that enables constant communication among people in
software development (Bai et al. 2018). The modern Agile approaches require
also fast product delivery and deployment. The Agile product development may
be achieved through incremental software releases and iterations; accordingly,
an overall model for Agile project management system is preferred if it enables
automation and continuous integration. These two concepts (Bou Ghantous and
Gill 2017) are the corner stone of DevOps approach. By relying on automation
and continuous integration, Agile frameworks or models may vertically
augment the speed and quality of software (Gill 2014; Perera et al. 2017).

The contemporary adaptive enterprise project management (Gill 2015b) would
require DevOps practices and tools to guide the enterprise scale Agile-DevOps
transformation for fast software delivery (Snyder et al. 2017). Software
productivity and frequency would require essential DevOps continuous
integration to enhance traditional Agile scrums. Relationship between DevOps
and Agile Project Management (Lwakatare et al. 2016) would positively improve
Quality of Software by enabling real-time monitoring and automated testing
which consequently facilitate feedback loop mechanism for continuous
improvement. Further, Quality of Service can be achieved by increasing the
deployment speed and frequency through continuous deployment (Colavita
2016). It is anticipated that typical model driven continuous deployment quality
can be ensured by using DevOps practices and tools (Artac et al. 2016). Agile
team can get clear insights into the project lifecycle status using DevOps
monitoring and reporting tools (Gill et al. 2017). To reach vertical Agile maturity
level (Qumer et al. 2007), development relies on continuous delivery assessment
(Bai et al. 2018) through real-time feedback from DevOps monitoring system
(Bou Ghantous and Gill 2018). This also enables collaboration and minimizes the
constraints of distributed teams (Wang and Liu 2018). By using DevOps
(Mohamed 2016), organizations, practitioners and researchers would be able to
adopt and scale Agile at the large enterprise level.

DevOps seems to be an interesting approach. However, the challenge is how to
effectively teach and learn DevOps to students so that they can effectively adopt
it to their software development environments? The purpose of this paper is to
provide such approach that can facilitate the teaching and learning of DevOps.
This paper uses the collaborative learning theory (Garfield 1993) to inform the
method of teaching of DevOps and Agile for large enterprise scale, which is not
an easy task. Thus, we also used a DevOps Reference Architecture (DRA)
models (Bou Ghantous and Gill 2018) within an enterprise scale adaptive
enterprise project management (AEPM) capability reference model (The Gill
Framework) (Gill 2015b) to provide students with large scale Agile-DevOps
software engineering experience in such a way that fits into a single semester.
This paper reports our learnings from a teaching case at the University of
Technology Sydney (UTS) and addresses the following main research question
and sub-questions:

130

©2019 The authors and IJLTER.ORG. All rights reserved.

RQ: How to effectively teach Agile-DevOps for the delivery of enterprise scale
portfolio of software projects?

This research question has following 3 sub-questions:

 RQ1: How to establish and simulate an effective Agile-DevOps
technology environment for teaching?

 RQ2: What are the reference models available for establishing such
environment for teaching?

 RQ3: How to teach using the established Agile-DevOps environment?

This paper aims to address the above mentioned research questions and is
organized as follows. Firstly, it presents the teaching case study context.
Secondly, it discusses the AEPM capability reference model for teaching the
Agile for the large scale portfolio of projects. Thirdly, it explains the DRA
models for teaching the DevOps within the AEPM. Fourthly, it highlights the
vital factors and elements required for a successful integration of the AEPM and
DRA for establishing and using the Agile-DevOps environment for teaching.
Finally, it concludes with possible options for further research and
improvements.

2. Case Study Context
UTS offers an undergraduate subject (Software Engineering Practice) in spring
sessions for (approx. 200 students). SEP duration is 12 weeks through face-to-
face workshops (three hours length each workshop, 6 credit points). The course
runs every spring session. The data collected for this paper are extracted from
spring 2016 and spring 2017 semesters when we started integrating the Agile
and DevOps approach for teaching SEP subject.

SEP starts in week 1 with initial introductory induction lecture or session which
focuses on the recent software industry trends and also introduces fundamental
Agile concepts, principles, practices and methods for large scale software
engineering. From week 2 until week 12, students are distributed in
collaborative learning workshop (approx. 40-50 students in each workshop)
based on the collaborative learning theory (Garfield 1993). The workshop
managers then setup the students in each workshop in groups. Each group has 5
or 6 students. Students are required to apply the modern Agile practices and
develop an industry level project over a period of 12 weeks. The software (each
group choses their own idea) is expected to developed using Agile methodology
and various technologies, programming languages and tools including Agile
and DevOps. The project delivery is divided into two releases (R0 and R1) with
an optional third release (R2). Each release is composed of 4 iterations (I0-I3).
Groups may choose to continue developing their project idea after graduating
from the subject. This collaborative and flexible approach encourages students to
take their project idea to the industry or add it to their professional resume.
Groups developing R0 and R1 are expected to apply:

 Agile requirements analysis and planning.

131

©2019 The authors and IJLTER.ORG. All rights reserved.

 Agile architecture and design.

 Agile implementation and testing by means of DevOps approach using
DRA as template.

The teaching materials are based on the overall AEPM capability reference
model from The Gill Framework (Gill 2015b). Workshop manager (tutor)
manages multiple groups developing various projects as a portfolio/ program of
projects. DRA (Bou Ghantous and Gill 2018) is utilized and taught to students
within the AEPM to construct automated software development and
deployment pipelines using a range of DevOps practices and toolchain.
Integrating DRA in the course allows to educate students how to apply DevOps
practices in the Agile development process for fast software release
management. Hence, in this paper we present our observations and experience
as managers or teachers of multiple teaching workshops (spring 2016 and spring
2017 semester). Thus, in order to address the research questions in-hand, this
paper demonstrates how can we teach enterprise scale Agile-DevOps using the
AEPM (Gill 2015b) and DRA (Bou Ghantous and Gill 2018) .

3. The AEPM Reference Model
The Gill Framework® (Gill 2015b) is meta-framework for defining, operating,
managing, supporting and adapting capabilities (see Fig. 1). Thus, it is not
another Agile method. This adaptive or Agile framework offers several reference
models such as adaptive enterprise architecture management (AEAM) (see
Fig.2) and AEPM reference models (see Fig.3). The focus of the paper is AEPM,
and thus it is briefly explained in this section. The AEPM can be tailored and
used for a situation at the portfolio, program, project, release and iteration levels
for scaling agility at different levels. The tailored capability is operated for
developing and managing project(s) in small releases and iterations. Thus,
AEPM describes Agile or adaptive planning, analysis, architecture, design,
implementation; testing and deployment services at different levels, from
portfolio to iteration level (see Fig. 3).

Figure 1: The Gill Framework® overview (with permission from A.Q. Gill)

Portfolio management:
The teaching was managed using the portfolio management approach using the
AEPM capability reference model (see Fig. 3). The teaching subject has several
workshops and each workshop has a number of projects and all the projects are

132

©2019 The authors and IJLTER.ORG. All rights reserved.

managed as a portfolio of student projects. Thus, the subject coordinator
performed the role of the portfolio manager to manage the overall teaching and
provided the required guidance to understand the agility at the large portfolio
scale. The subject runs for 12 weeks in spring semester. The subject coordinator
assigns tutors (managers) to each workshop.

Program management:
Tutors of each workshop are the program managers of the students’ projects in
their individual workshop or tutorial. Students are organised into a group of 5
or 6 with the help of the program manager. Groups are given the choice of
project idea for their project work. Further, each group needs to form a virtual
start-up company to deliver the software project, this is an important
consideration to bring entrepreneurship thinking and practices into academic
teaching.

Project Management:
All the student projects are independent and can be developed using a selection
of software technologies (Web app, IoT app, Mobile app, Desktop app using
Java, JSP, Python, HTML, JS, Node.JS, Angular.JS, REACT, RUBY, C#, ASP.NET,
etc.). Student group needs to self-organise as a virtual start-up company and
appoint a student project manager to coordinate the group project activities
using the Agile practices (e.g. Scrum).

Release Management:
Groups are expected to deliver the software using the Agile release management
practice. Students were required to only deliver release 0 (R0) and release 1 (R1).
R0 deliverable is a documented software prototype based on the project
proposal. R0 prototype is a good way to learn how to identify the project related
risks and technical dependencies earlier in the project before committing too
many resources upfront. R1 deliverable is full-working software. Student group
needs to appoint a release manager or scrum master (one of the students to take
on this role) to manage the delivery of releases.

Iteration Management:
Iterations are core to Agile-DevOps process. Each release has 4 iterations (I0-I3).
I0 is about setting up the environment to initiate the release in hand. Iteration
may span over a week or two. Students are expected to apply Agile practices for
analysis, planning, architecture and design at the iteration level. DevOps
automation and continuous integration (DRA) concepts vertically augment the
Agile team collaboration, testing, deployment and delivery (see highlighted
DevOps part in AEPM for adaptive iteration implementation in Fig. 3). DRA
was taught to students which enabled them to apply automated deployment,
continuous integration, automated testing (acceptance and unit) and real-time
monitoring practices to the delivery or release of a software product. For
instance, R1 software application is expected to be hosted on a server or cloud.
The project database is also expected to be hosted on a server or cloud (SQL, or
NoSQL). DRA model is used as guidance for students during R1. Students were
guided to apply DevOps practices within the DevOps part of the AEPM
capability reference model (see Fig. 3). This indicates the vertical integration and

133

©2019 The authors and IJLTER.ORG. All rights reserved.

relationships between the AEPM (Agile) and DRA (DevOps) in iterations within
in the release.

Figure 2: The Gill Framework® – Architecture Domains (with permission from A.Q.
Gill)

Figure 3: The Gill Framework® - AEPM Reference Model (with permission from A.Q.
Gill)

134

©2019 The authors and IJLTER.ORG. All rights reserved.

4. The DRA Model
The DRA (see Fig. 4) has three key components: DevOps, Multi-Cloud and IoT.
The concept of DRA design is to create a model that enables automation,
continuous integration, and real-time monitoring for software application
deployment in cloud including IoT applications. The DRA was used to teach
DevOps concepts, practices and tools to students for developing and deploying
their projects. The DRA context supports IoT applications, however the DRA
architecture is programming language independent and may deploy scale and
deliver any type of software application. The DRA context is expanded to a
conceptual model (Fig. 5) that supports human architecture and IT architecture
(Fig. 2). The combination of both architectures leads to architecture solution (Fig.
2) represented by DRA operation model instance (Fig. 7).

Figure 4: The DRA – Contextual Model

DRA Conceptual Model Architecture:
The Conceptual Model (see Fig. 5) describes the DRA components details at
conceptual level. It presents the It highlights key DevOps practices for students
such as integration, automation, collaboration etc. The model also highlights the
cloud and multi-cloud and its linking to DevOps. For instance, it highlights the
need for a continuous integration broker tools (CI-Broker) to distribute the
software application to multi-cloud environments after it had been automatically
tested. The benefits of this are that the deployment step was shifted outside the
multi-cloud and solely managed by CI-Broker. Also it means that multi-clouds
are only used for PaaS (platform as a service) to execute and scale the software
application. DRA conceptual model laid the foundation for a Logical
Architecture composed of 5 models (see Fig. 6).

DRA Logical Model Architecture:
DRA Logical Architecture is composed of five models (see Fig. 6). The models
are integrated at later stages with AEPM to function as a deployment code
engine. The models assist Agile software development with critical requirements
such as: automated synchronization of software code, automated testing (unit
and acceptance tests), automated build for project container, automated
distribution of software application to multi-cloud, automated deployment on
multiple clouds, automated log capturing, and automated reporting to Agile-
DevOps team.

135

©2019 The authors and IJLTER.ORG. All rights reserved.

Figure 5: The DRA – Conceptual Model

Figure 6: The DRA –Logical Model

136

©2019 The authors and IJLTER.ORG. All rights reserved.

DRA Logical model has 5 models, which are discussed in Table 1. Each model
has certain features and supporting tools. DRA Logical Model features are
derived from DevOps practices and realized using DevOps tools. Students
participating in the SEP subject learn how to implement the features mapped in
Table 1 and apply DevOps practices by integrating DevOps tools to create an
operational pipeline (Fig 7).

Table 1: The DRA Logical Models

Model
DRA Models

Features Tools

M1
1- Code Synchronization
2- Automated Code push
3- Automate logs reporting to M4

1- Github

2- BitBucket

M2

1- Automated Build
2- Automated Testing
3- Automated Deployment Multi-Cloud
4- CLI scripting for Testing/Deployment
5- Automate logs reporting to M4

1- Codeship

2- Travis-CI

3- Jenkins

M3

1- Automated Scaling
2- Automated Deployment
3- Virtual Servers - Orchestration
4- Fast Delivery – Staging
5- Automate logs reporting to M4

1- Heroku

2- Google App Engine

3- AWS CodeDeploy

M4

1- Acquire Commit logs
2- Acquire Build/Testing logs
3- Acquire Deployment logs
4- Automated Reporting
5- Integrate with communication tool
6- Automated Notifications

1- Papertrail

2- Nagios

3- New Relic

4- HipChat

5- Slack

M5

1- Cloud DB Management
2- Automated Data Mapping
3- Dynamic Application Access
4- Shared Resources
5- Virtual DB Servers
6- NoSQL DB

1- MongoDB (mLab)

2- DBMaestro

3- Firebase

DRA Pipeline Instance (for IoT):

The DRA Logical model is the basis to create pipelines for software application
deployment. (see Table 1, Fig. 6). DRA Logical model highlights a range of
DevOps tools to support the software project teams. DRA can be re-configured
to deploy different types of software applications (including IoT). DRA pipeline
(based on model M5) provides an external cloud database (MongoDB in this
example). Also DRA pipeline (based on model M2) provide external CI-Broker
(in this example Codeship). The mentioned elements in the pipeline are effective
key-factors that enable developers and practitioners to avoid multi-clouds
vendor lock-in. For the purpose of a practical demonstration of the DRA to

137

©2019 The authors and IJLTER.ORG. All rights reserved.

students and also for the proof of concept, we provided a video (YouTube)
showing the deployment of an IoT-app in DRA instance pipeline (Fig. 7). DRA
demo: https://youtu.be/JN38xS27ek0.

Figure 7: The DRA - Pipeline Instance for IoT Application

5. Dual Integrated Agile-DevOps Architecture
Agile enterprise project management (e.g. AEPM) requires automation and
frequent fast software application release. The AEPM provides an overall
guidance to management the large scale enterprise software delivery at the
portfolio, program, project, release and iteration levels (See section 2 and 3). The
DRA offers the DevOps practices and tools to support the DevOps concept of
the AEPM at the iteration level. This integration between the DRA and AEPM
is shown in Fig 8. The DRA as an extension and integration to AEPM is aimed
to provide concrete directions to development and operations teams to
effectively integrate and apply DevOps practices and tools as appropriate to
their context. The key-integration factors are mapped into Table 2. The cross-
architecture integration matrix shows the key elements of the AEPM reference
model elements and the support features of the DRA models (see Table 2). The
integrated AEPM and DRA elements were used as teaching instruments in the
software engineering teaching workshops to enable students to clearly
understand and apply the integrated Agile-DevOps approach to their team
projects. The AEPM and DRA made it simple and clearer for students on how to
effectively use DevOps for enterprise scale Agile software engineering.

138

©2019 The authors and IJLTER.ORG. All rights reserved.

Figure 8: The Gill Framework AEPM (Agile) and DRA (DevOps) Integration

Table 2: The AEPM and DRA Integration

The AEPM Reference Model The DRA Support Features DRA model

Agile Analysis

1- Communication
2- Logging
3- Reporting
4- Collaboration

M1 and M4

Agile Planning

1- Communication
2- Logging
3- Reporting
4- Collaboration

M1 and M4

Agile Architecture

1- Communication
2- Logging
3- Reporting
4- Collaboration

M1 and M4

Agile Design

1- Communication
2- Logging
3- Reporting
4- Collaboration

M1 and M4

Agile Implementation

1- Communication
2- Collaboration
3- Automated Build
4- Automated Monitoring
5- Automated Deployment
6- Cloud database
7- Real-time Monitoring
8- Automated logging

M1, M2, M3, M4,
and M5

Agile Testing

1- Communication
2- Collaboration
3- Automated Testing
4- Automated Monitoring
5- Cloud database
6- Real-time Monitoring
7- Automated logging

M1, M2, M4, M5

139

©2019 The authors and IJLTER.ORG. All rights reserved.

The AEPM Reference Model The DRA Support Features DRA model

Agile Deployment

1- Communication
2- Collaboration
3- Automated Build
4- Automated Monitoring
5- Automated Deployment
6- Cloud database
7- Real-time Monitoring
8- Automated logging

M1, M3, M4, M5

Agile Product Release

1- Communication
2- Collaboration
3- Auto-scaling
4- Automated Monitoring
5- Automated Deployment
6- Continuous Distribution
7- Real-time Monitoring
8- Automated logging
9- Fast Delivery

M1, M3, M4

Agile Quality Assurance

1- Communication
2- Collaboration
3- Automated Testing
4- Automated Monitoring
5- Real-time Monitoring
6- Automated logging

M1, M2, M4

Agile Team Collaboration

1- Communication
2- Collaboration
3- Automated Monitoring
4- Real-time Monitoring

M1, M4

Agile Retrospective

1- Communication
2- Collaboration
3- Automated Monitoring
4- Real-time Monitoring
5- Automated Testing

M1, M2, M4

6. The Agile-DRA for Teaching – A Case Study
In Section 3 of this paper, we discussed the program and project management.
The release management in earlier section indicates that the SEP subject project
has 2 releases (R0 and R1) and each release has 4 iterations (I0 to I3). R0
deliverable [week 1 to week 6] consists of Agile development process report, a
software prototype, and initial setup of the DRA operational model instance
(DRA pipeline Fig. 7). The initial DRA setup includes: 1) Source management
and repository (GitHub or BitBucket); 2) Collaboration and communication tool
(Slack); integration of (1) and (2). R1 deliverable [week 7 to week 12] consists of:
1) revised (updated report) Agile development process (user-stories, data
dictionary, architecture, design); 2) full working software that satisfies the Agile
requirements; and 3) DRAv2.0 pipeline for multi-cloud. The groups’ cohorts
configure their software delivery pipelines based on the logical model features
explained in earlier section (Fig. 6 and Table 1). Table 2 shows DRA logical
(Table 1) features that support Agile development process (planning, analysis,
architecture, design, implementation, testing, deployment and delivery); and

140

©2019 The authors and IJLTER.ORG. All rights reserved.

enable the automation of development steps and faster application delivery to
multiple clouds. Fig. 8 is an abstract illustration that expresses how DRA core
concepts integrate with the Agile (The Gill Framework) process. Students
participating in the course benefit from learning the principles of Agile
development process and learn how to adopt integrated Agile-DevOps
approach in a software development project.

7. The Teaching Case Study Evaluation
The case study discussed in this paper was evaluated using a student feedback
survey (SFS) conducted online between 09/10/2017 and 12/11/2017. The SFS is
an anonymous survey (survey No. 200063) that allows students (total 203
enrolled in spring 2017) to input ratings based on a scale composed of 5 possible
entries. The SFS scale is: SD (strongly disagree); D (disagree); N (neither agree or
disagree); A (agree); SA (strongly agree). The scale answers are used for the SFS
questionnaires (10 questions) (see example of some questions and student
feedback in Fig 9 and Fig 10). The survey also offered open questions section to
students (Fig 10). The open question section allows students to freely express
their opinion and give feedback about the quality of the subject materials and
staff. The responses and feedback to open question section indicate that the
students are overall satisfied with the subject materials, management and
teaching staff.

The students’ responses are computed to create Mean values for each question (a
decimal between 0 and 5). Table 3 shows the mean values distribution for each
question and calculates the average Mean value of the survey. The average
Mean value (AMV) of the survey is AMV = 3.82 out of 5 (76.38%). The AMV
indicates the subject has an acceptable level of success (above 75%) overall. This
also shows that the integration of DRA (DevOps based framework) and The Gill
Framework was a successful attempt to teach integrated Agile-DevOps
development in academic settings.

Table 3: SFS Mean Distribution

Question Mean Percentage

Q1 3.85 77.00%

Q2 4.00 80.00%

Q3 3.66 73.20%

Q4 3.93 78.60%

Q5 3.84 76.80%

Q6 3.87 77.40%

Q7 3.80 76.00%

Q8 3.69 73.80%

Q9 3.67 73.40%

Q10 3.88 77.60%

AMV = 3.82 76.38%

141

©2019 The authors and IJLTER.ORG. All rights reserved.

Figure 9: SFS Rating Example

Figure 10: The SFS Feedback Example

8. Discussion
This section discusses the key learnings from the teaching of integrated AEPM
and DRA to software engineering undergraduate students.

 Firstly, it is important to train the trainer or use experienced tutors before
actually teaching the complex concepts and integration of Agile-DevOps
to students.

 Secondly, we used an iterative and collaborative teaching approach,
which required us to explain the theory in the beginning of the semester
(first 3 workshop sessions). Remaining 9 sessions were focused on
actually using the concepts and tools of Agile-DevOps and applying it to
student projects within the overall context of agile portfolio and program
management.

 Thirdly, the role of the tutor was much more than just a teacher. They
played the role of a program manager along with the subject coordinator
(portfolio manager) who managed the overall learning instead of just
teaching. Thus, the focused shifted from traditional teaching to more
engaged practice oriented learning.

 Fourthly, students were required to self-organise, form a virtual start-up
company and nominate the project manager and scrum master. The role
of the project manager was to coordinate the student group project
activities or interactions (Solheim 2019) and serve as a single point of
contact for the program manager such as the tutor. Further, to internally
manage the technical deliverables of the software they were required to
appoint the scrum master or technical lead. This helped the students to
get near real industry experience.

142

©2019 The authors and IJLTER.ORG. All rights reserved.

 Fifthly, in order to facilitate the outside class learning, pre-workshop and
post-workshop material including videos and quizzes were posted to
enhance learning experience beyond classroom. This provided the
students with the flexibility to learn in their own time and prepare before
coming into the schedule collaborative learning workshops.

 Sixthly, the students’ feedback results for spring 2016 and spring 2017
semesters was positive and optimistic. Students conveyed that Agile-
DevOps integration enabled optimal and efficient workshop
environment which reflected industry experience.

In summary, both the AEPM and DRA reference models guided the teachers
and students to effectively setup the Agile-DevOps environment, and then plan,
deliver and manage the learning of complex Agile-DevOps concepts, principles,
practices and tools during a single semester. It is also important to note here that
several well-known research databases were used (e.g. IEEE, ACM, AIS
(eLibrary) and Google Scholar) for finding the relevant literature for this paper.

9. Conclusion
This paper demonstrates how to teach complex Agile and DevOps concepts,
principles, practice and tools to students in a University environment using the
reference models such as the AEPM and DRA as a guide. This has been clearly
demonstrated in this paper using a teaching case study example. The teaching
case study provided several insights, in particular, the use of the reference
models, role of the subject coordinator, tutors and students in the overall
collaborative learning process. Subject coordinator used the reference models
and played the role of the industry level portfolio manager. Tutors played the
role of a program manager for the student projects in their workshops. Students
played the roles of project manager, scrum master, business analyst, developer,
tester and DevOps engineer. This helped the students to understand the
industry roles and required skills. This is an attempt to provide industry like
experience and orientation to students to make them ready for the job. The
learnings from this paper can be used by practitioners and academics to
effectively develop and improve human capability in the area of Agile and
DevOps. Hence, this paper is expected to help researchers, academics and
practitioners seeking to further research the enterprise scale Agile-DevOps
software engineering.

References
 Artac, M., Borovšak, T., Di Nitto, E., Guerriero, M. and Tamburri, D.A. (2016). Model-

Driven Continuous Deployment for Quality DevOps. Proceedings of the 2nd
International Workshop on Quality-Aware DevOps.
doi:10.1145/2945408.2945417.

Alzoubi, Y. I. and Gill, A.Q. (2014). Agile Global Software Development Communication
Challenges: A Systematic Review. PACIS 2014.

143

©2019 The authors and IJLTER.ORG. All rights reserved.

Alzoubi, Y.I, Gill, A. Q. Al-Ani, A. (2015). DistributedAgile Development
Communication: An Agile Architecture Driven Framework. Journal of Software.
681-694. doi:10.17706/jsw.10.6.

Alzoubi, Y.I., Gill, A. Q. and Moulton, B.(2018). A measurement model to analyze the
effect of Agile enterprise architecture on geographically distributed Agile
development. Journal of software engineering research and development,
Springer. doi:10.1186/s40411-018-0048-2.

Bai, X. Li, M., Pei, D., Li, S. and Ye, D. (2018). Continuous Delivery of Personalized
Assessment and Feedback in Agile Software Engineering Projects. 2018
ACM/IEEE 40th International Conference on Software Engineering: Software
Engineering Education and Training.doi: 10.1145/3183377.3183387.

Bou Ghantous, G. and Gill, A. (2017). DevOps: Concepts, Practices, Tools, Benefits and
Challenges. 21st PACIS 2017. http://aisel.aisnet.org/pacis2017/96.

Bou Ghantous, G. and Gill, A. (2018). DevOps Reference Architecture for Multi-Cloud
IOT Applications. 20th IEEE International Conference on Business Informatics
CBI2018 Vienna Austria.doi:10.1109/CBI.2018.00026.

Colavita, F. (2016). DevOps Movement of Enterprise Agile Breakdown Silos, Create
Collaboration, Increase Quality, and Application Speed. Proceedings of 4th
International Conferencein Software Engineering for Defence Applications,
Advances in Intelligent Systems and Computing 422. doi:10.1007/978-3-319-
27896-4_17.

Garfield, J. (1993) Teaching Statistics Using Small-Group Cooperative Learning, Journal of
Statistics Education. doi:10.1080/10691898.1993.11910455.

Gill, A. Q. (2014). Applying agility and living service systems thinking to enterprise
architecture. International Journal of Intelligent Information Technologies
(IJIIT), 10(1), 1-15.doi:10.4018/ijiit.2014010101.

Gill, A. Q. (2015). Learning Enterprise Agile Software Engineering. IEEE ASWEC 2015.
doi:10.1109/.26.

Gill, A.Q. (2015b). Adaptive Cloud Enterprise Architecture, World Scientific.

Gill, A. Q., Henderson-Sellers, B., & Niazi, M. (2018). Scaling for agility: A reference
model for hybrid traditional-agile software development
methodologies. Information Systems Frontiers, 20(2), 315-341.doi: 10.1007/s10796-
016-9672-8.

Gill, A.Q., Loumish, A., Riyat, I. and Han, S. (2017). DevOps for information
management systems. VINE Journal of Information and Knowledge Management
Systems, 48 (1), 122-139. doi:10.1108/VJIKMS-02-2017-0007.

Lwakatare, L. E., Kuvaja, P., and Oivo, M. (2016). Relationship of DevOps to Agile, Lean
and Continuous Deployment A Multivocal Literature Review Study. PROFES
2016, Springer LNCS 10027, 399–415.doi:10.1007/978-3-319-49094-6_27.

Mason, R.T., Masters, W. and Stark, A. (2017). Teaching Agile Development with
DevOps in a Software Engineering and Database Technologies Practicum. 3rd
International Conference on Higher Education Advances, HEAd’17.
doi:10.4995/HEAd17.2017.5607,2017.

Mohamed, S.I. (2016). DevOps Maturity Calculator DOMC - Value oriented approach.
International Journal of Engineering Research & Science (IJOER) ISSN: [2395-6992],
2(2).

Neve, J. R., Godbole, K., Neve, R. (2017). Productivity And Process Improvement Using
‘Scaled Agile’ Approaches: An Emphasized Analysis. Proceedings of the
International Conference on Inventive Computing and Informatics (ICICI 2017).
doi:10.1109/ICICI.2017.8365245.

144

©2019 The authors and IJLTER.ORG. All rights reserved.

Perera, P., Silva, R., and Perera, I. (2017). Improve Software Quality through Practicing
DevOps. IEEE 2017 International Conference on Advances in ICT for Emerging
Regions (ICTer). doi:10.1109/ICTER.2017.8257807.

Qumer, A., and Henderson-Sellers, B. McBride, T. (2007). Agile adoption and
improvement model. Proceedings European and Mediterranean Conference on
Information Systems 2007 (EMCIS2007) June 24-26 2007, Polytechnic University
of Valencia, Spain.

Snyder, B., Mae, F. and Curtis, B. (2017). Using Analytics to Guide Improvement during
an Agile–DevOps Transformation. IEEE Software, IEEE Computer
Society.doi:10.1109/MS.2017.4541032.

Solheim, K. (2019). Teachers’ Aspirations to Improve their Classroom Interaction.
International Journal of Learning, Teaching and Educational Research. 18(6),
147-169. doi:10.26803/ijlter.18.6.9.

Wang, C. and Liu, C. (2018). Adopting DevOps in Agile: Challenges and Solutions.
Independent thesis Advanced leve. Faculty of Computing, Blekinge Institute of
Technology, 371 79 Karlskrona, Sweden.

